Plant distributions in the southwestern United States; a scenario assessment of the modern-day and future distribution ranges of 166 Species

Open-File Report 2012-1020
By: , and 

Links

Abstract

The authors developed spatial models of the predicted modern-day suitable habitat (SH) of 166 dominant and indicator plant species of the southwestern United States (herein referred to as the Southwest) and then conducted a coarse assessment of potential future changes in the distribution of their suitable habitat under three climate-change scenarios for two time periods. We used Maxent-based spatial modeling to predict the modern-day and future scenarios of SH for each species in an over 342-million-acre area encompassing all or parts of six states in the Southwest--Arizona, California, Colorado, Nevada, New Mexico, and Utah. Modern-day SH models were predicted by our using 26 annual and monthly average temperature and precipitation variables, averaged for the years 1971-2000. Future SH models were predicted for each species by our using six climate models based on application of the average of 16 General Circulation Models to Intergovernmental Panel on Climate Change emission scenarios B1, A1B, and A2 for two time periods, 2040 to 2069 and 2070 and 2100, referred to respectively as the 2050 and 2100 time periods. The assessment examined each species' vulnerability to loss of modern-day SH under future climate scenarios, potential to gain SH under future climate scenarios, and each species' estimated risk as a function of both vulnerability and potential gains. All 166 species were predicted to lose modern-day SH in the future climate change scenarios. In the 2050 time period, nearly 30 percent of the species lost 75 percent or more of their modern-day suitable habitat, 21 species gained more new SH than their modern-day SH, and 30 species gained less new SH than 25 percent of their modern-day SH. In the 2100 time period, nearly half of the species lost 75 percent or more of their modern-day SH, 28 species gained more new SH than their modern-day SH, and 34 gained less new SH than 25 percent of their modern-day SH. Using nine risk categories we found only two species were in the least risk category, while 20 species were in the highest risk category. The assessment showed that species respond independently to predicted climate change, suggesting that current plant assemblages may disassemble under predicted climate change scenarios. This report presents the results for each species in tables (Appendix A) and maps (14 for each species) in Appendix B.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Plant distributions in the southwestern United States; a scenario assessment of the modern-day and future distribution ranges of 166 Species
Series title Open-File Report
Series number 2012-1020
DOI 10.3133/ofr20121020
Year Published 2012
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Southwest Biological Science Center
Description iv, 28 p.; Appendices; Link to Appendix B
First page i
Last page 83
Country United States
Online Only (Y/N) Y
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details