Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis

Open-File Report 2012-1239




Remote sensing information has been widely used to monitor vegetation condition and variations in a variety of ecosystems, including shrublands. Careful application of remotely sensed imagery can provide additional spatially explicit, continuous, and extensive data on the composition and condition of shrubland ecosystems. Historically, the most widely available remote sensing information has been collected by Landsat, which has offered large spatial coverage and moderate spatial resolution data globally for nearly three decades. Such medium-resolution satellite remote sensing information can quantify the distribution and variation of terrestrial ecosystems. Landsat imagery has been frequently used with other high-resolution remote sensing data to classify sagebrush components and quantify their spatial distributions (Ramsey and others, 2004; Seefeldt and Booth, 2004; Stow and others, 2008; Underwood and others, 2007). Modeling algorithms have been developed to use field measurements and satellite remote sensing data to quantify the extent and evaluate the quality of shrub ecosystem components in large geographic areas (Homer and others, 2009). The percent cover of sagebrush ecosystem components, including bare-ground, herbaceous, litter, sagebrush, and shrub, have been quantified for entire western states (Homer and others, 2012). Furthermore, research has demonstrated the use of current measurements with historical archives of Landsat imagery to quantify the variations of these components for the last two decades (Xian and others, 2012). The modeling method used to quantify the extent and spatial distribution of sagebrush components over a large area also has required considerable amounts of training data to meet targeted accuracy requirements. These training data have maintained product accuracy by ensuring that they are derived from good quality field measurements collected during appropriate ecosystem phenology and subsequently maximized by extrapolation on high-resolution remote sensing data (Homer and others, 2012). This method has proven its utility; however, to develop these products across even larger areas will require additional cost efficiencies to ensure that an adequate product can be developed for the lowest cost possible. Given the vast geographic extent of shrubland ecosystems in the western United States, identifying cost efficiencies with optimal training data development and subsequent application to medium resolution satellite imagery provide the most likely areas for methodological efficiency gains. The primary objective of this research was to conduct a series of sensitivity tests to evaluate the most optimal and practical way to develop Landsat scale information for estimating the extent and distribution of sagebrush ecosystem components over large areas in the conterminous United States. An existing dataset of sagebrush components developed from extensive field measurements, high-resolution satellite imagery, and medium resolution Landsat imagery in Wyoming was used as the reference database (Homer and others, 2012). Statistical analysis was performed to analyze the relation between the accuracy of sagebrush components and the amount and distribution of training data on Landsat scenes needed to obtain accurate predictions.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Earth Resources Observation and Science (EROS) Center
iv, 18 p.
United States
Online Only (Y/N):
Additional Online Files (Y/N):