Simulations of a hypothetical temperature control structure at Detroit Dam on the North Santiam River, northwestern Oregon

Open-File Report 2015-1012
Prepared in cooperation with the U.S. Army Corps of Engineers
By: , and 



Water temperature models of Detroit Lake, Big Cliff Lake, and the North Santiam River in northwestern Oregon were used to assess the potential for a hypothetical structure with variable intake elevations and an internal connection to power turbines at Detroit Dam (scenario SlidingWeir) to release more natural, pre-dam temperatures year round. This hypothetical structure improved outflow temperature control from Detroit Dam while meeting minimum dry-season release rates and lake levels specified by the rule curve specified for Detroit Lake.

A water temperature target based on long-term, without-dams temperature estimates was developed and used to guide the Detroit Lake model to blend releases from the user-defined outlets at Detroit Dam. Simulations that included warm surface water releases during the spring and summer, and cool, deep hypolimnetic water releases later during autumn typically met the temperature target. Immediately downstream of Detroit Dam, these simulations resulted in temperatures within the range of the without-dams temperature estimates for most of the year until about November. The minimum release rates of flow imposed at Detroit Dam during late summer and early autumn exceeded unregulated, without-dams flow estimates. This higher flow led to temperatures near the low end of the without-dams temperature range 46.3 river miles downstream at Greens Bridge from July to September; the high flows released from Detroit Dam were less susceptible to downstream warming than the low unregulated flows. Simulations that blended warm and cool water from different outlets at Detroit Dam resulted in less daily temperature variation compared to the without-dams scenarios as far downstream as Greens Bridge.

Estimated egg-emergence days for endangered Upper Willamette River Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River winter steelhead (Oncorhynchus mykiss) were assessed for all scenarios. Estimated spring Chinook fry emergence under SlidingWeir scenarios was 9 days later immediately downstream of Big Cliff Dam, and 4 days later at Greens Bridge compared with existing structural scenarios at Detroit Dam. Despite the inclusion of a hypothetical sliding weir at Detroit Dam, temperatures exceeded without-dams temperatures during November and December. These late-autumn exceedances likely represent the residual thermal effect of Detroit Lake operated to meet minimum dry-season release rates (supporting instream habitat and irrigation requirements) and lake levels specified by the current (2014) operating rules (supporting recreation and flood mitigation).

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Simulations of a hypothetical temperature control structure at Detroit Dam on the North Santiam River, northwestern Oregon
Series title Open-File Report
Series number 2015-1012
DOI 10.3133/ofr20151012
Year Published 2015
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Oregon Water Science Center
Description vi, 30 p.
Country United States
State Oregon
Other Geospatial Big Cliff Lake, Detroit Lake, North Santiam River
Datum North American Datum of 1927
Projection Universal Transverse Mercator projection, Zone 10
Online Only (Y/N) Y
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details