Health and condition of endangered young-of-the-year Lost River and Shortnose suckers relative to water quality in Upper Klamath Lake, Oregon, 2014–2015

Open-File Report 2017-1134
Prepared in cooperation with the Bureau of Reclamation
By: , and 

Links

Abstract

Most mortality of endangered Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, occurs within the first year of life. Juvenile suckers in Clear Lake Reservoir, California, survive longer and may even recruit to the spawning populations. In a previous (2013–2014) study, the health and condition of juvenile suckers and the dynamics of water quality between Upper Klamath Lake and Clear Lake Reservoir were compared. That study found that apparent signs of stress or exposure to irritants, such as peribiliary cuffing in liver tissue and mild inflammation and necrosis in gill tissues, were present in suckers from both lakes and were unlikely to be clues to the cause of differential mortality between lakes. Seasonal trends in energy storage as glycogen and triglycerides were also similar between lakes, indicating prey limitation was not a likely factor in differential mortality. To better understand the relationship between juvenile sucker health and water quality, we examined suckers collected in 2014–2015 from Upper Klamath Lake, where water quality can be dynamic and, at times, extreme.

While there were notable differences in water quality and fish health between years, we were not able to identify any specific water-quality-related causes for differential fish condition. Water quality was generally better in 2014 than in 2015. When considered together afflictions and abnormalities generally indicated healthier suckers in 2014 than 2015. Low dissolved-oxygen events (< 4 milligrams per liter) were less frequent and occurred earlier; high pH events (≥ 9.5) were less frequent and shorter in duration; large diel fluctuations in pH (≥ 1.4) were less frequent; water temperatures were warmer, particularly in July and September; and concentrations of microcystin in both large and small fractions of samples were lower in 2014 than in 2015. Total and therefore also un-ionized ammonia were low in 2014–2015 relative to concentrations known to affect suckers. Petechial hemorrhages of the skin, attached Lernaea spp. and eosinophilic hyaline droplets in the kidney tubules were less prevalent in 2014 than in 2015; however, hyperplastic and hypertrophic gill tissue and trichodinids on the gills were observed more frequently in 2014. There were more suckers with normal liver color and texture in 2014 than in 2015. The prevalence of suckers with liver inflammation was greater in 2014 and only observed in suckers collected after August 5, whereas liver inflammation occurred intermittently in 2015. Liver glycogen among suckers decreased in late-August 2014 and increased from early August to mid-September 2015. Lost River suckers had greater whole-body triglyceride content but a larger proportion with an absence of visceral fat observed in 2014 than in 2015. In contrast, shortnose suckers were similar between years in regard to both whole-body triglyceride and visceral fat. Black-spot-forming parasites (trematode metacercariae) were observed in a higher prevalence on shortnose suckers but not Lost River suckers in 2014 than in 2015. Opercular deformities were less prevalent in both species in 2014 than in 2015.

Neither gross nor histological examination revealed a high prevalence of abnormalities in suckers that clearly indicate a primary mechanism for juvenile mortality in Upper Klamath Lake. Histological abnormalities were almost always focal and minimal or mild except where associated with parasites. Mild to severe focal abnormalities associated with Lernaea sp. attachment sites and encysted digenean (trematode) metacercariae are unlikely to be associated with mortality. Severe and diffuse inflammation and hyperplasia of the gills associated with Ichthyobodo sp. on one Lost River sucker, may indicate a potential cause of mortality. High mortality may have primarily occurred outside our study period (for example, in spring or over winter), or was caused by a factor that could not be detected with our methods (for example, predation). Alternatively, abnormalities in a small percentage of passively captured suckers in Upper Klamath Lake may indicate health-related issues that were more prevalent in populations than in our samples. Temporary decreases in liver glycogen stores may also indicate periods of stress, which may eventually lead to mortality of young suckers.

Suggested Citation

Burdick, S.M., Conway, C.M., Elliott, D.G., Hoy, M.S., Dolan-Caret, Amari, and Ostberg, C.O., 2017, Health and condition of endangered young-of-the-year Lost River and shortnose suckers relative to water quality in Upper Klamath Lake, Oregon, 2014–2015: U.S. Geological Survey Open-File Report 2017-1134, 40 p., https://doi.org/10.3133/ofr20171134.

ISSN: 2331-1258 (online)

Study Area

Table of Contents

  • Executive Summary
  • Background
  • Description of Study Area
  • Methods
  • Results
  • Discussion 
  • Conclusions
  • Acknowledgments
  • References Cited

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Health and condition of endangered young-of-the-year Lost River and Shortnose suckers relative to water quality in Upper Klamath Lake, Oregon, 2014–2015
Series title Open-File Report
Series number 2017-1134
DOI 10.3133/ofr20171134
Year Published 2017
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Western Fisheries Research Center
Description vi, 41 p.
Country United States
State Oregon
Other Geospatial Upper Klamath Lake
Online Only (Y/N) Y