Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

Open-File Report 2018-1078
Prepared in cooperation with National Oceanic and Atmospheric Administration, National Marine Fisheries Service
By:

Links

Abstract

The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta.

In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC).

For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as much as 6–10 percentage points. The maximum decrease in survival occurred at an intermediate Sacramento River flow of about 20,000–30,000 ft3 /s. Diversion rates increased rapidly as Sacramento River flows increased from 20,000 ft3 /s to 30,000 ft3 /s, until a maximum diversion rate was reached at 9,000 ft3 /s. Because through-Delta survival increases sharply over this range of Sacramento River flow before beginning to level off with further flow increases, increasing diversion rates over this flow range causes a large decrease in survival relative to no diversion. 

For the second analysis, we applied the survival model to 82 years of daily simulated flows under the Proposed Action (PA) and No Action Alternative (NAA). The PA includes operation of the Central Valley Project/State Water Project with implementation of the NDD and its operations prescribed by the NDD bypass rules, whereas the NAA assumes system operations without implementation of the NDD. We also evaluated a “Level 1” (L1) scenario, which was similar to the PA scenario but applied the most protective bypass rule known as Level 1 post-pulse operations. We noted a high probability that survival under the PA scenario was lower than under the NAA scenario, and that travel time was longer under PA relative to NAA in most simulation years. However, the largest survival differences between the PA and NAA scenarios occurred during October–November and May–June. Although bypass rules are less restrictive during these periods, we determined that more frequent use of the DCC under PA led to the largest differences in survival between the two scenarios. Additionally, we noted no difference in median survival decreases between the PA and L1 scenarios, although in some years the L1 scenario had a lower survival decrease than the PA scenario.

For the third analysis, we proposed a quantitative approach for developing NDD rule curves (that is, prescribed diversion flows for given inflows) by using the survival model to identify diversion rates that meet a criterion of a having a small probability of exceeding a given decrease in survival. We examined diversion rates that led to a 10% chance of exceeding a given decrease in survival for a range of absolute and relative decreases in survival. To maintain a given constant level of protection across the range of river flows, our analysis indicated that diversions had to increase at a much slower rate with respect to Sacramento River flow relative to the rule curves defined in the NDD bypass table. Additionally, we determined that diversion rates could be higher than under the bypass table rule curves at river flows less than 20,000 ft3 /s, but diversions had to be less than defined by NDD bypass rules at higher flows.

For the fourth analysis, we simulated the effect of “real-time operations” on salmon survival, where bypass flow rates were determined by the presence of juvenile salmon entering the Delta, as indicated by juvenile salmon catch in a rotary screw trap upstream of the Delta. For this analysis, we evaluated NDD operations as defined by the L1 scenario and an additional scenario (Unlimited Pulse Protection [UPP]) that provided protection to an unlimited number of fish pulses. This analysis indicated that the highest catches occurred during flow pulses when daily survival was high, which caused annual survival to be weighted towards periods of high daily survival, resulting in a high annual survival. We determined that the mean annual survival decreased by 1–4 percentage points, and annual survival decreases were more frequently smaller for the UPP scenario. Additionally, because the UPP scenario protected an unlimited number of fish pulses, decreases in daily survival under the UPP scenario were less than under the L1 scenario.

Suggested Citation

Perry, R.W., and Pope, A.C., 2018, Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California: U.S. Geological Survey Open-File Report 2018-1078, 94 p. plus appendixes, https://doi.org/10.3133/ofr20181078.

ISSN: 2331-1258 (online)

Study Area

Table of Contents

  • Abstract
  • Introduction
  • Methods
  • Results
  • Discussion
  • Acknowledgments
  • References Cited
  • Appendixes 1–11

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California
Series title Open-File Report
Series number 2018-1078
DOI 10.3133/ofr20181078
Year Published 2018
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Western Fisheries Research Center
Description Report: x, 94 p.; 11 Appendixes
Country United States
State California
Other Geospatial Sacramento-San Joaquin River Delta
Online Only (Y/N) Y
Additional Online Files (Y/N) Y