The geologic classification of the meteorites

Open-File Report 68-97




The meteorite classes of Prior and Mason are assigned to three proposed genetic groups on the basis of a combination of compositional, mineralogical, and elemental characteristics: l) the calcium-poor, volatile-rich carbonaceous chondrites and achondrites; 2) the calcium-poor, volatile-poor chondrites (enstatite, bronzite, hypersthene, and pigeonite), achondrites (enstatite, hypersthene, and pigeonite), stonyirons (pallasites, siderophyre), and irons; and, 3) the calcium-rich (basaltic) achondrites. Chondrites are correlated with calcium-poor achondrites and the silicate phase of the pallasitic meteorites on Fe contents of olivine and pyroxene; and with metal of the stony-irons and irons on the basis of trace elements (Ga and Ge). Transitions in structure and texture between the chondrites and achondrites are recognized. The Van Schmus-Wood chemical-petrologic classification of the chondrites has been modified and expanded to a mineralogic-petrologic classification of the chondrites and calcium-poor achondrites. Chondrites apparently are the first rocks of the solar system. Paragenetic and textural relations in the Murray carbonaceous chondrite shed new light on the manner of accretion, and on the character of dispersed solid materials ('dust', and chondrules and metal) that existed in the solar system before accretion. Two pre-accretionary mineral assemblages (components) are recognized in the carbonaceous chondrites and in the unequilibrated volatile-poor chondrites. They are: 1) a 'low temperature' water-, rare gas-, and carbon-bearing component; and, 2) a high temperature anhydrous silicate and metal component. Paragenetic relations indicate that component 2 materials predate chondrite formation. An accretionary assemblage (component 3) also is recognized in the carbonaceous chondrites and in the unequilibrated volatile-poor chondrites. Component 3 consists of very fine grains of olivine and pyroxene, which occur as pervasive disseminations, as small irregular aggregates of grains, and as large subround to round, finely granular accretional chondrules. Evidence in Murray indicates that component 3 silicates precipitated abruptly and at low pressures, possibly from a high temperature gas, in an environment that contained dispersed component 1 and 2 materials. All component 3 aggregates in Murray contain component 1 material, most commonly as flakes, and locally as tiny granules and larger spherules, some of which are hollow and some of which were broken prior to their mechanical incorporation in accretionary chondrules. Accretion may have occurred as ices associated with dispersed water-bearing component 1 materials temporarily melted during the precipitation of component 3 silicates, and then abruptly refroze to form an icy cementing material. Group 1 materials may be cometary, and group 2 materials may be asteroidal. Schematic models are proposed. Evidence is reviewed for the lunar origin of the pyroxeneplagioclase achondrites. On the basis of natural remanent magnetism, it is suggested that the very scarce diopside-olivine achondrites may be samples from Mars. A classification of the meteorite breccias, including the calcium-poor and calcium-rich mesosiderites, and irons that contain silicate fragments, is proposed. A fragmentation history of the meteorites is outlined on the basis of evidence in the polymict breccias, and from gas retention ages in stones and exposure ages in irons. Cometal impacts appear to have caused the initial fragmentation, stud possibly the perturbation of orbits, of two inferred asteroidal bodies (enstatite and bronzite), one and possibly both events occurring before 2000 m.y. ago. Several impacts apparently occurred on the inferred hypersthene body in the interval 1000 to 2000 m.y. ago. Major breakups of the three bodies apparently occurred as the result of interasteroidal collisions at about 900 m.y. ago, and 600 to 700 m.y. ago. The breakups were followed by a number of fr

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
The geologic classification of the meteorites
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey],
271 p. ill. (some folded, some col.) ;30 cm.