Sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States North Atlantic Outer Continental Shelf

Open-File Report 75-353




The area designated for possible oil and gas lease sale as modified from BLM memorandum 3310 #42 (722) and referred to therein as the North Atlantic Outer Continental Shelf (OCS) contains about 58,300 sq km of shelf beneath water depths of less than 200 m and lies chiefly within the Georges Bank basin. The oldest sediments drilled or dredged on the bordering Continental Slope are sandstone, clay, and silt of Upper Cretaceous age. In Upper Cretaceous exposures, on Marthas Vineyard and nearby New England islands, the predominant lithology appears to be clay. About 125 km northeast of the eastern tip of Georges Bank, the Shell B-93 well penetrated clays and silts of Upper and Lower Cretaceous age above dense Jurassic carbonate rocks which overlie a basement of lower Paleozoic slate, schist, quartzite, and granite.

Structurally, the Georges Bank basin is a westerly trending trough which opens to the west-southwest. Post-Paleozoic sediments are more than 8 km thick in parts of the basin. Major structural features appear to be directly related to basement structures. Local anticlines, probably caused by differential compaction over basement flexures and horst blocks or by later uplift along basement faults are reflected principally in Lower Cretaceous and older sediments, though some of these features continue upward to within 0.7 of a second (about 650 m) of the seafloor.

Tertiary deposits in the Georges Bank basin are probably up to a kilometre thick and are made up of poorly consolidated sand, silt, and clay. The Cretaceous section is inferred to be up to 3.5 km thick and to be mainly clastics -- shale, siltstone, calcareous shale, changing to limestone in the lowest part of the system. Jurassic rocks in the deepest part of the basin appear to be about 3.6 to 4.0 km thick and probably consist mainly of dense carbonates.

Potential source rocks in the Georges Bank basin may include organic-rich Cretaceous shale and carbonaceous Jurassic limestone. By analogy with the Scotian Shelf, Cretaceous sandstones are considered to be potential reservoir rocks. Local zones of porous dolomite are believed to be present in carbonate rocks of Jurassic age and should not be overlooked as potential reservoirs.

Structural highs related to draping and differential compaction over basement blocks could be important potential petroleum traps. Additional traps may include reef structures near the shelf edge, updip pinchouts, and stratigraphic traps in both clastic and carbonate sediment.

A statistical mean for the undiscovered recoverable petroleum resources is calculated to be 0.9 billion barrels of oil and 4.2 trillion cubic feet of gas. At the 5 percent probability level (1 in 20 chance) the undiscovered recoverable petroleum resources are calculated to be 2.4 billion barrels of oil and 12.5 trillion cubic feet of gas. These undiscovered recoverable petroleum resources are those quantities of oil and gas that may be reasonably expected to exist in favorable settings, but which have not yet been identified by drilling. Such estimates, therefore, carry a high degree of uncertainty.

Environmental studies of Georges Bank indicated a low-moderate risk from petroleum development. However, the risk estimate is based on very limited data. Drift bottle returns used to infer oil spill trajectories show about a 2% overall recovery rate. Meteorologic data comes mainly from nearby land areas and from ships attempting to avoid storms. Seismicity on Georges Bank is low. This may reflect, in large part, the difficulty of land-based stations in recording earthquakes far from the coast. Direct data on the engineering properties of shallow buried sediment comes mainly from two Texas Tower surveys of limited areas on Georges Shoal and Nantucket Shoals made in the early 1950's. The 17 holes (most less than 30 m deep) reveal some silty layers below loose sand and much lateral variability in sediment type over short distances.

The technology for exploration at the required water depths (20 m - 200 m) is available. Mobil drilling units are in great demand around the world and will have to be brought in from other areas along with skilled manpower. Our highest estimates indicate 50 platforms, 800 producing wells, 1,100 km of pipeline, and 5 onshore terminals may be needed. The time frame for production, using our high estimates (5% probability) for the undiscovered recoverable resources, could include 4-5 years for significant development, 6-7 years until production commences, and 18 years until peak production.

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States North Atlantic Outer Continental Shelf
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey
vii, 179 p.