Electron-microprobe study of chromitites associated with alpine ultramafic complexes and some genetic implications

Open-File Report 78-119
By:

Links

Abstract

Electron-microprobe and petrographic studies of alpine chromite deposits from around the world demonstrate that they are bimodal with respect to the chromic oxide content of their chromite. The two modes occur at 54 ? 4 and 37 ? 3 weight per cent chromic oxide corresponding to chromite designated as high-chromium and high-aluminum chromite respectively. The high-chromium chromite occurs exclusively with highly magnesian olivine (Fo92-97) and some interstitial diopside. The high-aluminum chromite is associated with more ferrous olivine (Fo88-92), diopside, enstatite, and feldspar. The plot of the mole ratios Cr/(Cr+Al+Fe3+) vs. Mg/(Mg+Fe2+) usually presented for alpine chromite is shown to have a high-chromium, high-iron to low-chromium, low-iron trend contrary to that shown by stratiform chromite. This trend is characteristic of alpine type chromite and is termed the alpine trend. However, a trend similar to that for startiform chromite is discernable on the graph for the high-chromium chromite data. This latter trend is well-developed at Red Mountain, Seldovia, Alaska. Analysis of the iron-magnesium distribution coefficient, Kd=(Fe/Mg)ol/(Fe/Mg)ch, between olivine and chromite shows that Kd for the high-chromium chromite from all ultramafic complexes has essentially the same constant value of .05 while the distribution coefficient for the high-aluminum chromite varies with composition of the chromite. These distribution coefficients are also characteristic of alpine-type chromites. The constant value for Kd for the high-chromium chromite and associated high-magnesium olivine in all alpine complexes suggests that they all crystallized under similar physico-chemical conditions. The two types of massive chromite and their associations of silicate minerals suggest the possibility of two populations with different origins. Recrystallization textures associated with the high-aluminum chromite together with field relationships between the gabbro and the chromite pods, suggest that the high-aluminum chromite was formed by metamorphic recrystallization of the ultramafic rocks and adjacent gabbro.
Publication type Report
Publication Subtype USGS Numbered Series
Title Electron-microprobe study of chromitites associated with alpine ultramafic complexes and some genetic implications
Series title Open-File Report
Series number 78-119
DOI 10.3133/ofr78119
Edition -
Year Published 1978
Language ENGLISH
Publisher U.S. Geological Survey,
Description vi, 39 leaves, 15 leaves of ill. :ill. ;27 cm.; (61 p. - PGS)
Google Analytic Metrics Metrics page
Additional publication details