Progress report on lithium-related geologic investigations in Bolivia

Open-File Report 82-782
By: , and 



The September 1, 1981, Samoa Islands Region earthquake occurred at the extreme northern end of the Tonga arc in a region where the Pacific plate may be disjointed along a hinge fault. In the last 50 years, magnitude 7 or greater earthquakes have occurred in this region on the average of once every six years, but four 7+ events have now occurred within the last six years. The mainshock was preceded about two hours earlier by a foreshock that was used as a calibration event for the Joint Epicenter Determination relocation of the mainshock and nearby seismicity occurring within a period seven months prior to and one week after the mainshock. The foreshock, better-located events of the prior seismicity, and most aftershocks are concentrated in a group near the mainshock epicenter, but several more distant aftershocks suggest that the aftershock zone may have been as large as 125 km in length and trended about S35?E. Identification of depth phases from a full suite of broadband records gives source depths of 25-3km for the mainshock and 29.5?3 km for the foreshock using a JB earth model. Source parameters were determined for the mainshock utilizing WWSSN analog and GDSN digital data. The preferred fault plane solution based on P-wave first motion data is a south by southwesterly steeply dipping normal fault, remarkably similar to the mechanism reported by Johnson and Molnar (1972) for the nearby earthquake of April 20, 196B. A waveform inversion technique described by Sipkin (1982), when applied to long-period P waveforms, gives an 'average' point source solution for a purely deviatoric moment rate tensor at a preferred source depth of 22 km. Very similar results were obtained from long-period GDSN body-wave and mantle-wave data using a centroid-moment tensor inversion technique described in Dziewonski, and others (1981). Both techniques provide solutions very close to a double couple source with a south by southwesterly shallow-dipping normal fault mechanism. To obtain the scalar mantle wave moment, GDSN vertical and transverse records 20,000 see in length were processed as described by Buland and Taggart (1981). Averaging all the data from Rayleigh and Love waves yields an estimate of 3.8 x 10^27 dyne-cm (as compared to about 1.9 x 10^27 from body-wave moment tensor inversions) or a moment magnitude (Mr) of 7.6. For the portion of the waveform analysed (50-5B sec), the body-wave inversion performed by Sipkin gives a source time function of duration approximately 28 sec with two peaks in activity. Simultaneous analysis of short-period records, and broadband ground displacements and velocities, a method described by Harvey and Choy (1982) and Choy and Boatwright (1981) revealed a complex rupture consisting of two subevents, of about the same moment, separated in time by about 25 sec, and with durations of about 25 sec each. The two peaks in activity resolved by the body-wave moment tensor inversion correspond to the first of these subevents.
Publication type Report
Publication Subtype USGS Numbered Series
Title Progress report on lithium-related geologic investigations in Bolivia
Series title Open-File Report
Series number 82-782
DOI 10.3133/ofr82782
Edition -
Year Published 1982
Language ENGLISH
Publisher U.S. Geological Survey,
Description 18 p., maps ;28 cm.
Google Analytic Metrics Metrics page
Additional publication details