Level II scour analysis for Bridge 29 (BRIDTH00360029) on Town Highway 36, crossing North Branch Ottauquechee River, Bridgewater, Vermont

Open-File Report 96-245

Prepared in cooperation with Vermont Agency of Transportation and Federal Highway Administration



This report provides the results of a detailed Level II analysis of scour potential at structure BRIDTH00360029 on town highway 36 crossing the North Branch Ottauquechee River, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D.

The site is in the Green Mountain physiographic division of central Vermont in the town of Bridgewater. The 27.1-mi2 drainage area is a predominantly rural basin. In the vicinity of the study site, the left and right banks are covered by pasture and (or) fields with the immediate stream banks covered by woody vegetation. The left bank of North Branch Ottauquechee River is adjacent to Bridgewater town highway 001.

In the study area, the North Branch Ottauquechee River has a sinuous channel with a slope of approximately 0.008 ft/ft, an average channel top width of 73 ft and an average bank height of 6 ft. The predominant channel bed materials are gravel and cobble with a median grain size (D50) of 61.0 mm (0.200 ft). The geomorphic assessment at the time of the Level I and Level II site visit on October 26, 1994, indicated that the reach was stable.

The town highway 36 crossing of the North Branch Ottauquechee Riveris a 46-ft-long, one-lane bridge consisting of one 43-foot steel-beam span (Vermont Agency of Transportation, written communication, August 25, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. Type-2 (less than 36 inches) stone fill protects the upstream and downstream wingwalls. Sparse type-2 stone fill was also observed along the right abutment. The channel approach to the bridge is not skewed, however, the measured opening skew-to-roadway is five degrees. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 1.4 to 2.8 ft. The worst-case contraction scour occurred at the incipient overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 7.3 to 13.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Level II scour analysis for Bridge 29 (BRIDTH00360029) on Town Highway 36, crossing North Branch Ottauquechee River, Bridgewater, Vermont
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey
Publisher location:
Pembroke, NH
iv, 30 p.
United States
Other Geospatial:
North Branch Ottauquechee River