Level II scour analysis for Bridge 34 (ROCHTH00210034) on Town Highway 21, crossing the White River, Rochester, Vermont

Open-File Report 97-670

Prepared in cooperation with Vermont Agency of Transportation and Federal Highway Administration
ORCID iD and



This report provides the results of a detailed Level II analysis of scour potential at structure ROCHTH00210034 on Town Highway 21 crossing the White River, Rochester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, obtained from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 74.8-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is suburban on the upstream and downstream left overbanks, though brush prevails along the immediate banks. On the upstream and downstream right overbanks, the surface cover is pasture with brush and trees along the immediate banks.

In the study area, the White River has an incised, straight channel with a slope of approximately 0.002 ft/ft, an average channel top width of 102 ft and an average bank height of 5 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 74.4 mm (0.244 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 23, 1996, indicated that the reach was stable.

The Town Highway 21 crossing of the White River is a 72-ft-long, two-lane bridge consisting of 70-foot steel stringer span (Vermont Agency of Transportation, written communication, March 22, 1995). The opening length of the structure parallel to the bridge face is 67.0 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the opening-skew-to-roadway is zero degrees.

Channel scour, 1.5 ft deeper than the mean thalweg depth was observed along the left abutment and wingwalls during the Level I assessment. Scour countermeasures at the site includes type-1 stone fill (less than 12 inches diameter) along the upstream left bank and the upstream and downstream left road embankments, type-2 (less than 36 inches diameter) along the upstream end of the upstream left wingwall and downstream left bank, and type-3 (less than 48 inches diameter) along the downstream end of the downstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). In addition, the incipient roadway-overtopping discharge is analyzed since it has the potential of being the worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled discharges was zero. Left abutment scour ranged from 6.8 to 21.2 ft. Right abutment scour ranged from 13.9 to 18.4 ft. The worst-case abutment scour occurred at the 500-year discharge at the left and right abutments. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Level II scour analysis for Bridge 34 (ROCHTH00210034) on Town Highway 21, crossing the White River, Rochester, Vermont
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey
Publisher location:
Pembroke, NH
iv, 51 p.
United States
Other Geospatial:
White River