Level II scour analysis for Bridge 40 (ROCKTH00140040) on Town Highway 14, crossing the Williams River, Rockingham, Vermont

Open-File Report 98-543
Prepared in cooperation with Vermont Agency of Transportation and Federal Highway Administration
By:  and 

Links

Abstract

This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH00140040 on Town Highway 14 crossing the Williams River, Rockingham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 99.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture downstream of the bridge. Upstream of the bridge, the left bank is forested and the right bank is suburban.

In the study area, the Williams River has an incised, sinuous channel with a slope of approximately 0.005 ft/ft, an average channel top width of 154 ft and an average bank height of 11 ft. The channel bed material ranges from silt and clay to cobble with a median grain size (D50) of 45.4 mm (0.149 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 4, 1996, indicated that the reach was stable.

The Town Highway 14 crossing of the Williams River is a 106-ft-long, one-lane covered bridge consisting of two steel-beam spans with a maximum span length of 73 ft (Vermont Agency of Transportation, written communication, April 6, 1995). The opening length of the structure parallel to the bridge face is 94.5 ft. The bridge is supported by a vertical, concrete abutment with wingwalls on the left, a vertical, laid-up stone abutment on the right and a concrete pier. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is zero degrees. 

A scour hole 2.1 ft deeper than the mean thalweg depth was observed towards the left side of the channel under and just downstream of the bridge during the Level I assessment. Scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) at the upstream end of the upstream left wingwall and type-2 stone fill (less than 36 inches diameter) along the upstream left bank and the left abutment. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows was zero ft. Left abutment scour ranged from 13.9 to 19.2 ft. Right abutment scour ranged from 7.0 to 11.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Pier scour ranged from 18.7 to 24.7 ft and the worst case occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

Publication type Report
Publication Subtype USGS Numbered Series
Title Level II scour analysis for Bridge 40 (ROCKTH00140040) on Town Highway 14, crossing the Williams River, Rockingham, Vermont
Series title Open-File Report
Series number 98-543
DOI 10.3133/ofr98543
Year Published 1998
Language English
Publisher U.S. Geological Survey
Publisher location Pembroke, NH
Description iv, 55 p.
Country United States
State Vermont
City Rockingham
Google Analytic Metrics Metrics page
Additional publication details