Stratigraphy and structure of the western Kentucky fluorspar district

Professional Paper 1151-D




The western Kentucky fluorspar district is part of the larger Illinois-Kentucky fluorspar district, the largest producer of fluorspar in the United States. This report is based largely on data gathered from 1960 to 1974 during the U.S. Geological Survey-Kentucky Geological Survey cooperative geologic mapping program of Kentucky. It deals chiefly with the stratigraphy and structure of the district and, to a lesser extent, with the fluorspar-zinc-lead-barite deposits. Sedimentary rocks exposed in the district range in age from Early Mississippian (Osagean) to Quaternary. Most rocks exposed at the surface are Mississippian in age; two-thirds are marine fossiliferous limestones, and the remainder are shales, siltstones, and sandstones. Osagean deep-water marine silty limestone and chert are present at the surface in the southwestern corner of the district. Meramecian marine limestone is exposed at the surface in about half the area. Chesterian marine and fluvial to fluviodeltaic clastic sedimentary rocks and marine limestone underlie about one-third of the area. The total sequence of Mississippian rocks is about 3,000 ft thick. Pennsylvanian rocks are dominantly fluvial clastic sedimentary rocks that change upward into younger fluviodeltaic strata. Pennsylvanian strata of Morrowan and Atokan age are locally thicker than 600 ft along the eastern and southeastern margin and in the major grabens of the district where they have been preserved from erosion. Cretaceous and Tertiary sediments of the Mississippi embayment truncate Paleozoic formations in and near the southwestern corner of the district and are preserved mostly as erosional outliers. The deposits are Gulfian nonmarine gravels, sands, and clays as much as 170 ft thick and upper Pliocene fluvial continental deposits as thick as 45 ft. Pleistocene loess deposits mantle the upland surface of the district, and Quaternary fluvial and fluviolacustrine deposits are common and widespread along the Ohio and Cumberland Rivers and their major tributaries. Many mafic dikes and a few mafic sills are present. The mafic rocks are mostly altered mica peridotites or lamprophyres that are composed of carbonate minerals, serpentine, chlorite, and biotite and contain some hornblende, pyroxene, and olivine. Most of the dikes are in a north-north west-trending belt 6 to 8 mi wide and strike N. 20 0 -30 0 W. The dikes dip from 80 0 to 90 0 and are commonly 5 to 10 ft wide. Radioisotopic study indicates that the dikes are Early Permian in age. The district is just southeast of the intersection of the east-trending Rough Creek-Shawneetown and northeast-trending New Madrid fault systems. The district's principal structural features are a northwest-trending domal anticline, the Tolu Arch, and a series of steeply dipping to nearly vertical normal faults and fault zones that trend dominantly northeastward and divide the area into elongated northeast-trending grabens and horsts. Formation of these grabens and horsts was one of the major tectonic events in the district. Vertical displacement may be as much as 3,000 ft but commonly ranges from a few feet to a few hundred feet; no substantial horizontal movement is believed to have taken place. Many cross faults having only a few feet of displacement trend northwestward and are occupied at places by mafic dikes. Faulting was mostly post-Early Permian to pre-middle Cretaceous in age. Many theories have been advanced to explain the structural history of the district. A generally acceptable overall hypothesis that would account for all the structural complexities, however, is still lacking. Useful structural data, such as the structural differences between the grabens and the horsts, have been obtained, however, from the recently completed geologic mapping. Mapping also has more clearly shown the alinement of the Tolu Arch, the belt of dikes, and an unusually deep graben (the Griffith Bluff graben); this alinement suggests that possibl

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Stratigraphy and structure of the western Kentucky fluorspar district
Series title:
Professional Paper
Series number:
Year Published:
p. D1-D41; 1 plate in pocket