Physical properties of the surface materials at the Viking landing sites on Mars

Professional Paper 1389
By: , and 

Links

Abstract

This report summarizes the results of the Physical Properties Investigation of the Viking '75 Project, activities of the surface samplers, and relevant results from other investigations. The two Viking Landers operated for nearly four martian years after landing on July 20 (Lander 1) and Sept. 3 (Lander 2), 1976; Lander 1 acquired its last pictures on or about Nov. 5, 1982. Lander 1 rests on a smooth, cratered plain at the west edge of Chryse Planitia (22.5 ? N, 48.0? W), and Lander 2 rests 200 km west of the crater Mie in Utopia Planitia (48.0? N, 225.7? W). Lander 1 views showed that dune-like deposits of drift material were superposed on rock-strewn surfaces. Soil-like material from the rock-strewn areas was called blocky material. Lander 2 views also showed a rock-strewn surface. Polygonal to irregular features, etched by the wind, revealed crusty to cloddy material among rocks. Both landers descended to the surface along nearly vertical trajectories. Velocities at touchdown were about 2 m/s for both landers. Footpad 2 of Lander 1 penetrated drift material 0.165 m, and footpad 3 penetrated blocky material 0.036 m. The two visible footpads of Lander 2 struck rocks. Erosion by exhausts from the forward engines produced craters with rims of mixed fine-grained material and platy to equidimensional clods, crusts, and fragments. Comparison of engine-exhaust erosion on Mars with terrestrial data suggested that drift material behaved like a weakly cohesive material with a grain size less than 3-9 /-lm. Although not sand, blocky and crusty to cloddy materials eroded like sand-with grain sizes of 0.01 or 0.2 cm. The surface samplers accomplished an impressive number of tasks. All experiments that required samples received samples. Deep holes, as much as 0.22 m deep, were excavated by both landers. Lander 2 successfully pushed rocks and collected samples from areas originally beneath the rocks. Tasks specifically accomplished for the Physical Properties Investigation include: (1) acquiring motor-current data while excavating trenches, (2) performing surface-bearing tests, (3) performing backhoe touchdowns, (4) attempting to chip or scratch rocks, (5) comminuting samples, (6) measuring subsurface diurnal temperatures, and (7) constructing conical piles of materials on and among rocks. Sample trenches in the three major types of soil-like materials were different from one another. Trenches in drift material, which were typically 0.06 m deep, had steep walls along much of their lengths, lumpy tailings and floors, and smooth domed surfaces with sparse fine fractures around their tips. Trenches in blocky material, which were typically 0.03-0.04 m deep, had steep walls near their tips, and surfaces around their tips were displaced upward and some appeared blocky. Trenches in crusty to cloddy material, which were typically 0.04-0.05 m deep, had steep and often irregular slopes near their tips, clods and slabs of crust in their tailings, and disrupted areas around their tips composed of mixed fine-grained material and slabs of crust or thick polygonal clods that had been displaced upwards. Data acquired during landing, trenching, surface-bearing tests, backhoe touchdowns, and from other science experiments were used to determine the mechanical properties of drift, blocky, and crusty to cloddy materials. Drift material appeared to be very fine grained, with local planes of weakness; in general, the drift material was consistent with a material having an angle of internal friction about 18?, a cohesion ranging from 0.7 to 3.0 kPa, and a bulk density of 1,200 kg/m 3 . Blocky material was consistent with a material having an angle of internal friction about 30?, cohesions from 1.5 to 16 kPa, and a bulk density of 1,600 kg/m 3 . Crusty to cloddy material had variable properties. For chiefly crusty to cloddy material, angles of internal friction were about 35 ? , and cohesions were from 0.5 to 5.2 kPa. For mixed fines and crusts, a
Publication type Report
Publication Subtype USGS Numbered Series
Title Physical properties of the surface materials at the Viking landing sites on Mars
Series title Professional Paper
Series number 1389
DOI 10.3133/pp1389
Edition -
Year Published 1987
Language ENGLISH
Description 222 p.; 2 plates in pocket
Google Analytic Metrics Metrics page
Additional publication details