Water quality and landscape processes of four watersheds in eastern Puerto Rico

Professional Paper 1789
By: , and 

Links

Abstract

Humid tropical regions occupy about a quarter of Earth's land surface, yet they contribute a substantially higher fraction of the water, solutes, and sediment discharged to the world's oceans. Nearly half of Earth's population lives in the tropics, and development stresses can potentially harm soil resources, water quality, and water supply and in addition increase landslide and flood hazards. Owing to Puerto Rico's steep topography, low water storage capacity, and dependence on trade-wind precipitation, the island's people, ecosystems, and water supply are vulnerable to extreme weather such as hurricanes, floods, and droughts. Eastern Puerto Rico offers a natural laboratory for separating geologic and land-cover influences from regional- and global-scale influences because of its various bedrock types and the changing land cover surrounding intact, mature forest of the Luquillo Experimental Forest. Accordingly, a multiyear assessment of hydrological and biogeochemical processes was designed to develop an understanding of the effects of these differences on local climate, streamflow, water quality, and ecosystems, and to form the basis for a long-term and event-based program of climate and hydrologic monitoring. Because infrequent, large storms play a major role in this landscape, we focused on high-runoff events, sampling 263 storms, including all major hurricanes from 1991 through 2005. The largest storms have profound geomorphic consequences, such as landslides, debris flows, deep gullying on deforested lands, excavation and suspension of sediment in stream channels, and delivery of a substantial fraction of annual stream sediment load. Large storms sometimes entrain ocean foam and spray causing high concentrations of seasalt-derived constituents in stream waters during the storm. Past deforestation and agricultural activities in the Cayaguás and Canóvanas watersheds accelerated erosion and soil loss, and this material continues to be remobilized during large storms. Nearly 5,000 routine and event samples were analyzed for parameters that allow determination of denudation rates based on suspended and dissolved loads; 860 of these samples were analyzed for a comprehensive suite of chemical constituents. The rivers studied are generally similar in water-quality characteristics, and windward or leeward aspect appears to exert a stronger influence on water quality than geology or land cover. Of samples analyzed for comprehensive chemistry and for sediment, 543 were collected at runoff rates greater than 1 millimeter per hour, 256 at rates exceeding 10 millimeters per hour, and 3 at rates exceeding 90 millimeters per hour. Streams have rarely been sampled during events with such high runoff rates. Rates of physical and chemical weathering are especially high, and physical denudation rates, forested watersheds included, are considerably greater than is expected for a steady-state system. The elevated physical erosion drives an increased particulate organic carbon flux, one that is large, important to the carbon cycle, and sustainable, because soil-carbon regeneration is rapid. The 15-year Water, Energy, and Biogeochemical Budget dataset, which includes discharge, field parameters, suspended sediment, major cations and anions, and nutrients, is available from the U.S. Geological Survey's National Water Information System (http://waterdata.usgs.gov/nwis). The dataset provides a baseline for characterizing future environmental change and will improve our understanding of the interdependencies of land, water, and biological resources and their responses to changes in climate and land use. Because eastern Puerto Rico resembles many tropical regions in terms of geology and patterns of development, implications from this study are transferable to other tropical regions facing deforestation, rapid land-use change, and climate change.
Publication type Report
Publication Subtype USGS Numbered Series
Title Water quality and landscape processes of four watersheds in eastern Puerto Rico
Series title Professional Paper
Series number 1789
DOI 10.3133/pp1789
Year Published 2012
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) National Research Program
Description viii, 292 p.; Appendices; col. ill.; maps (col.)
First page i
Last page 292
Country Puerto Rico
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details