thumbnail

Manganese

Professional Paper 1802-L

By:
, , and
Edited by:
Klaus J. Schulz ORCID iD , John H. DeYoung, Jr. ORCID iD , Robert R. Seal II ORCID iD , and Dwight C. Bradley ORCID iD
https://doi.org/10.3133/pp1802L

Links

Abstract

Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component in the production of this fundamental material. The United States has been totally reliant on imports of manganese for many decades and will continue to be so for at least the near future. There are no domestic reserves, and although some large low-grade resources are known, they are far inferior to manganese ores readily available on the international market. World reserves of manganese are about 630 million metric tons, and annual global consumption is about 16 million metric tons. Current reserves are adequate to meet global demand for several decades. Global resources in traditional land-based deposits, including both reserves and rocks sufficiently enriched in manganese to be ores in the future, are much larger, at about 17 billion metric tons. Manganese resources in seabed deposits of ferromanganese nodules and crusts are larger than those on land and have not been fully quantified. No production from seabed deposits has yet been done, but current research and development activities are substantial and may bring parts of these seabed resources into production in the future. The advent of economically successful seabed mining could substantially alter the current scenario of manganese supply by providing a large new source of manganese in addition to traditional land-based deposits.

From a purely geologic perspective, there is no global shortage of proven ores and potential new ores that could be developed from the vast tonnage of identified resources. Reserves and resources are very unevenly distributed, however. The Kalahari manganese district in South Africa contains 70 percent of the world’s identified resources and about 25 percent of its reserves. South Africa, Brazil, and Ukraine together accounted for nearly 65 percent of reserves in 2013. The combination of total import reliance for manganese, the mineral commodity’s essential uses in our industrialized society, and the potential for supply disruptions because of the limited sources of the ore makes manganese among the most critical minerals for the United States.

Manganese is the 12th most abundant element in Earth’s crust. Its concentration varies among common types of rocks, mostly in the range of from 0.1 to 0.2 percent. The highest quality manganese ores contain from 40 to 45 percent manganese. The formation of these ores requires specialized geologic conditions that concentrate manganese at several hundred times its average crustal abundance. The dominant processes in forming the world’s principal deposits take place in the oceans. As a result, most important manganese deposits occur in ancient marine sedimentary rocks that are now exposed on continents as a result of subsequent tectonic uplift and erosion. In many cases, other processes have further enriched these manganiferous sedimentary rocks to form some of today’s highest grade ores. Modern seabed resources of ferromanganese nodules cover vast areas of the present ocean floor and are still forming by complex interactions of marine microorganisms, manganese dissolved in seawater, and chemical processes on the seabed.

Manganese is ubiquitous in soil, water, and air. It occurs most often in solid form but can become soluble under acidic conditions. Manganese mining, like any activity that disturbs large areas of Earth’s surface, has the potential to produce increases in manganese concentrations that could be harmful to humans or the environment if not properly controlled. Although manganese is an essential nutrient for humans and most other organisms, overexposure can lead to neurotoxicity in humans. Workers at manganese mining and processing facilities have the greatest potential to inhale manganese-rich dust. Without proper protective equipment, these workers may develop a permanent neurological disorder known as manganism. Each manganese mine is unique and presents its own suite of potential hazards and preventative measures. Likewise, various nations have their own sets of standards to ensure safe mining, isolation of mine waste, treatment of mine waters, and mine closure and restoration. Interest in mining trace metals contained in ferromanganese nodules and crusts on the seabed has increased rapidly in the past decade. Prime areas for future research include overcoming the technological challenges presented by mining as deep as 6,500 meters below sea level and understanding and mitigating the potential impacts of seabed mining on marine ecosystems.

Suggested Citation

Cannon, W.F., Kimball, B.E., and Corathers, L.A., 2017, Manganese, chap. L of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. L1–L28, https://doi.org/10.3133/pp1802L.

ISSN: 2330-7102 (online)

ISSN: 1044-9612 (print)

Table of Contents

  • Abstract 
  • Introduction
  • Geology 
  • Resources and Production 
  • Exploration for New Deposits
  • Environmental Considerations 
  • Problems and Future Research 
  • References Cited

Additional publication details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Manganese
Series title:
Professional Paper
Series number:
1802
Chapter:
L
ISBN:
978-1-4113-3991-0
DOI:
10.3133/pp1802L
Year Published:
2017
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Eastern Mineral and Environmental Resources Science Center
Description:
viii, 28 p.
Larger Work Type:
Report
Larger Work Subtype:
USGS Numbered Series
Larger Work Title:
Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply
Online Only (Y/N):
N
Additional Online Files (Y/N):
N