Geology of the southern Elkhorn Mountains, Jefferson and Broadwater Counties, Montana

Professional Paper 292
By: , and 



The geology of an area of about 270 square miles in the southern Elkhorn Mountains, west of Townsend in west-central Montana, is described. The mountains in the southern part of the area comprise northward-trending alternating ridges and valleys underlain principally by folded sedimentary rocks. They merge northward into the higher and more rugged main mass of the mountains, which is underlain principally by upper Cretaceous volcanic rocks. The mountaintops are 1,000 to 4,500 feet above the major valleys.

The sedimentary rocks range in age from Precambrian to Tertiary and the igneous rocks from late Cretaceous to probably middle Tertiary. The oldest rocks are varicolored mudstone, shale, and sandstone of the Belt series of late Precambrian age. They are overlain with slight unconformity by a moderately thick but incomplete section of Paleozoic rocks. The basal Paleozoic formation is the Flathead quartzite of Middle Cambrian age, which is overlain by alternating units of shale and carbonate rock : the Wolsey shale, the Meagher limestone, the Park shale, the Pilgrim dolomite, and the Red Lion formation, all of Cambrian age. A slight erosional unconformity between the Red Lion formation and the Maywood formation of late Devonian age marks a long interval of crustal stability in the area. The Maywood is overlain by the Jefferson dolomite and the Three Forks shale of Late Devonian and Mississippian age, and these in turn are conformably overlain by the Lodgepole and Mission Canyon limestones, a thick carbonate sequence of Mississippian age. A slight erosional unconformity separates the Mission Canyon limestone from the Amsden formation, which probably includes beds of both Mississippian and Pennsylvanian age. The Amsden is composed of a heterogeneous assemblage of arenaceous, argillaceous, dolomitic, and calcareous rocks and grades upward into the Quadrant formation of Pennsylvanian age, an alternation of quartzitic sandstone and dolomite. At the top of the Paleozoic section is the Phosphoria formation of Permian age, a thin unit of chert and quartzitic sandstone that contains a few thin phosphate beds.

The basal Mesozoic unit is the Swift formation of late Jurassic age, a thin calcareous marine sandstone that overlies the Phosphoria with slight erosional unconformity. It is overlain by nonmarine shale and sandstone of the Morrison formation of late Jurassic age and the Kootenai formation of Early Cretaceous age. The Kootenai is overlain, possibly with slight erosional unconformity, by the Colorado formation an assemblage of marine dark shale and siliceous mudstone and nonmarine quartz-chert sandstone. The Colorado formation as here used includes beds of both Early and Late Cretaceous age. The Colorado in places grades upwards into a sequence of feldspathic sandstone and tuff beds here named the Slim Sam formation. Elsewhere within the area, the Slim Sam formation is absent, probably in part owing to erosion and in part nondeposition. Where present, the Slim Sam grades upward into a thick sequence of andesitic and quartz latitic volcanic rocks, comprising tuffs, lapilli tuffs, breccias, welded tuffs and flows, that are here named the Elkhorn Mountains volclinics and are probably entirely of Cretaceous age. Where the Slim Sam formation is absent, the Elkhorn Mountains volcanics rest with angular unconformity on beds as old as the Morrison. 

The pre-Tertiary layered rocks, aggregating more than 15,000 feet in thickness, were folded and intruded by igneous rocks of several types, and the area was uplifted and eroded to a terrain of mature relief, similar to that of the present. During the Oligocene epoch, volcanic sediments with interbreds of nonvolcanic gravel accumulated. These beds were in turn moderately eroded, and gravel of Miocene ( ?) age was deposited in channels within them. Subsequently, probably during the Pliocene epoch, the Tertiary beds were weakly deformed locally, and a pediment was cut across the Tertiary and older rocks in the southern part of the area. Fan gravel, in part of Recent origin and in part older, blankets parts of the pediment. Glacial deposits of at least two stages of Pleistocene glaciation are present in the higher mountains in the northern part of the area.

The intrusive igneous rocks, except for a few felsite dikes of uncertain age, are divisible into two groups, primarily on the basis of structural relations and secondarily on the basis of composition and fabric. The older group of dioritic and andesitic rocks were intruded in part, if not wholly, prior to the main folding and are similar in chemical and mineralogical composition to the Elkhorn Mountains volcanics. They were probably emplaced throughout the period of volcanism that commenced in late Niobrara time and continued until late Cretaceous time. The younger group consists chiefly of quartzbearing phanerites but includes rocks ranging from gabbro to alaskitic granite and aplite. These rocks were emplaced after the main episode of folding and faulting. The Boulder batholith, composed dominantly of quartz monzonite, is the principal body of this younger group.

The older igneous rocks metamorphosed the invaded rocks only slightly. In contrast, the younger intrusive bodies, and especially the batholith, altered and recrystallized the country rock in moderately broad belts, changing them to various types of hornfels, calcsilicate rock, marble, and vitreous quartzite. Concomitantly magnetite, garnet, axinite, and other high-temperature replacement minerals formed locally as products of additive metamorphism.

The pre-Tertiary layered rocks of the southern Elkhorn Mountains are folded into northward-trending folds and are cut by many faults. The sedimentary rocks tend to be more tightly folded than the Elkhorn Mountains volcanics, although both were involved in the major folding. The principal folds of the area from east to west are : a major dome, a complex syncline with several second-order folds, and a remnant of a northward-plunging anticline, the major part of which was engulfed by the batholith. The folded rocks are cut by many faults of small to moderate displacement and by two faults of large displacement. Most of the faults were probably formed by the same forces that produced the folds. The origin of the two major faults, however, is uncertain, and may be related to igneous activity. The batholith crosscuts the folded structure and is in turn cut by small faults. Some parts of the area were elevated along steep normal faults in late Tertiary time. 

The southern part of the Elkhorn Mountains has been mountainous at least since early Oligocene time, and probably began to take form during the Cretaceous. As a consequence of long continued erosion, the modern topography reflects the structure and lithologic character of the underlying rocks except in a few areas blanketed by poorly consolidated Tertiary rocks and in the higher mountains where glaciation has been prominent.

Silver, lead, zinc, and gold have been produced, either singly or, more typically, as a combination of metals from a number of types of ore deposits. Replacement deposits in carbonate rocks are the most common type, but veins, contact metamorphic deposits, and pipelike bodies of breccia cemented by ore and gangue minerals also are present. The Elkhorn mining district has the largest number of mines and the greatest variety of types of deposits. In the Tizer Basin several narrow goldbearing veins cut andesitic volcanic rocks, and in the southern part of the area sporadic small veins and replacement deposits occur in carbonate rocks. The mines and prospects of the area are described, and some suggestions for future prospecting are outlined. The application of geochemical prospecting techniques may prove of value, judging from the results of reconnaissance soil sampling in the vicinity of the Elkhorn mine.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Geology of the southern Elkhorn Mountains, Jefferson and Broadwater Counties, Montana
Series title Professional Paper
Series number 292
DOI 10.3133/pp292
Year Published 1957
Language English
Publisher U.S. Government Printing Office
Description Report: iv, 82 p.; 7 Plates: 44.48 x 23.48 inches or smaller
Country United States
State Montana
County Broadwater County;Jefferson County
Other Geospatial Elkhorn Mountains
Scale 31250
Google Analytic Metrics Metrics page
Additional publication details