Chloroform in the hydrologic system--sources, transport, fate, occurrence, and effects on human health and aquatic organisms

Scientific Investigations Report 2004-5137
By:  and 

Links

Abstract

Chloroform is one of the volatile organic compounds (VOCs) detected most frequently in both ground and surface water. Because it is also one of the four trihalomethanes (THMs) produced in the highest concentrations during the chlorination of drinking water and wastewater, the frequent detection of this compound in ground and surface water of the United States is presumed to be caused primarily by the input of chlorinated water to the hydrologic system. Although anthropogenic sources of the compound are substantial, they are currently estimated to constitute only 10 percent of the total global input to the hydrologic system. Natural sources of the compound include volcanic gases, biomass burning, marine algae, and soil microorganisms. Under most conditions (except in the presence of unusually high bromide concentrations), chloroform is the THM produced in the highest concentrations during chlorination. Furthermore, in most cases where more than one THM is produced from chlorination, the relative concentrations among the different compounds usually decrease with increasing bromination (chloroform > dichlorobromomethane > chlorodibromomethane > bromoform). This phenomenon is presumed to be responsible for the common observation that when more than one THM is detected during investigations of the occurrence of these compounds in the hydrologic system, this same trend is typically observed among their relative concentrations or, for a uniform reporting limit, their relative frequencies of detection. This pattern could provide a valuable means for distinguishing between chlorinated water and other potential sources of chloroform in the environment. Chloroform has been widely detected in national, regional, and local studies of VOCs in ground, surface, source, and drinking waters. Total THM (TTHM) concentrations of the compound, however, were typically less than the Maximum Contaminant Level (MCL) of 80 ?g/L (micrograms per liter) established by the U.S. Environmental Protection Agency (USEPA) for TTHMs. In the studies that compared land-use settings, frequencies of detection of chloroform were higher beneath urban and residential areas than beneath agricultural or undeveloped areas. Because chloroform is a suspected human carcinogen, its presence in drinking water is a potential human health concern. Liver damage, however, is known to occur at chloroform exposures lower than those required to cause cancer, an observation that has been considered by the USEPA as the basis for setting a new, non-zero Maximum Contaminant Level Goal of 70 ?g/L for the compound. As part of its National Water-Quality Assessment Program, the U.S. Geological Survey has been assembling and analyzing data on the occurrence of VOCs (including chloroform) in ground and surface water on a national scale from studies conducted between 1991 and the present. This report presents a summary of current (2004) information on the uses, sources, formation, transport, fate, and occurrence of chloroform, as well as its effects on human health and aquatic organisms.
Publication type Report
Publication Subtype USGS Numbered Series
Title Chloroform in the hydrologic system--sources, transport, fate, occurrence, and effects on human health and aquatic organisms
Series title Scientific Investigations Report
Series number 2004-5137
DOI 10.3133/sir20045137
Edition -
Year Published 2004
Language ENGLISH
Description viii, 34 p. : ill., map ; 28 cm.
Google Analytic Metrics Metrics page
Additional publication details