Quality of water in the Trinity and Edwards aquifers, south-central Texas, 1996-98

Scientific Investigations Report 2004-5201
Prepared as part of the National Water-Quality Assessment Program
By:  and 

Links

Abstract

During 1996–98, the U.S. Geological Survey studied surface- and ground-water quality in south-central Texas. The ground-water components included the upper and middle zones (undifferentiated) of the Trinity aquifer in the Hill Country and the unconfined part (recharge zone) and confined part (artesian zone) of the Edwards aquifer in the Balcones fault zone of the San Antonio region. The study was supplemented by information compiled from four ground-water-quality studies done during 1996–98.

Trinity aquifer waters are more mineralized and contain larger dissolved solids, sulfate, and chloride concentrations compared to Edwards aquifer waters. Greater variability in water chemistry in the Trinity aquifer likely reflects the more variable lithology of the host rock. Trace elements were widely detected, mostly at small concentrations. Median total nitrogen was larger in the Edwards aquifer than in the Trinity aquifer. Ammonia nitrogen was detected more frequently and at larger concentrations in the Trinity aquifer than in the Edwards aquifer. Although some nitrate nitrogen concentrations in the Edwards aquifer exceeded a U.S. Geological Survey national background threshold concentration, no concentrations exceeded the U.S. Environmental Protection Agency public drinking-water standard.

Synthetic organic compounds, such as pesticides and volatile organic compounds, were detected in the Edwards aquifer and less frequently in the Trinity aquifer, mostly at very small concentrations (less than 1 microgram per liter). These compounds were detected most frequently in urban unconfined Edwards aquifer samples. Atrazine and its breakdown product deethylatrazine were the most frequently detected pesticides, and trihalomethanes were the most frequently detected volatile organic compounds. Widespread detections of these compounds, although at small concentrations, indicate that anthropogenic activities affect ground-water quality.

Radon gas was detected throughout the Trinity aquifer but not throughout the Edwards aquifer. Fourteen samples from the Trinity aquifer and 10 samples from the Edwards aquifer exceeded a proposed U.S. Environmental Protection Agency public drinking-water standard. Sources of radon in the study area might be granitic sediments underlying the Trinity aquifer and igneous intrusions in and below the Edwards aquifer.

The presence of tritium in nearly all Edwards aquifer samples indicates that some component of sampled water is young (less than about 50 years), even for long flow paths in the confined zone. About one-half of the Trinity aquifer samples contained tritium, indicating that only part of the aquifer contains young water.

Hydrogen and oxygen isotopes of water provide indicators of recharge sources to the Trinity and Edwards aquifers. Most ground-water samples have a meteorological isotopic signature indicating recharge as direct infiltration of water with little residence time on the land surface. Isotopic data from some samples collected from the unconfined Edwards aquifer indicate the water has undergone evaporation. At the time that ground-water samples were collected (during a drought), nearby streams were the likely sources of recharge to these wells.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Quality of water in the Trinity and Edwards aquifers, south-central Texas, 1996-98
Series title Scientific Investigations Report
Series number 2004-5201
DOI 10.3133/sir20045201
Year Published 2004
Language English
Publisher U.S. Geological Survey
Contributing office(s) Texas Water Science Center
Description vi, 17 p.
Country United States
State Texas
Google Analytic Metrics Metrics page
Additional publication details