Sensitivity of alpine and subalpine lakes to acidification from atmospheric deposition in Grand Teton National Park and Yellowstone National Park, Wyoming

Scientific Investigations Report 2005-5023
By: , and 

Links

Abstract

The sensitivity of 400 lakes in Grand Teton and Yellowstone National Parks to acidification from atmospheric deposition of nitrogen and sulfur was estimated based on statistical relations between acid-neutralizing capacity concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. Acid-neutralizing capacity concentrations that were measured at 52 lakes in Grand Teton and 23 lakes in Yellowstone during synoptic surveys were used to calibrate the statistical models. Three acid-neutralizing capacity concentration bins (bins) were selected that are within the U.S. Environmental Protection Agency criteria of sensitive to acidification; less than 50 microequivalents per liter (?eq/L) (0-50), less than 100 ?eq/L (0-100), and less than 200 ?eq/L (0-200). The development of discrete bins enables resource managers to have the ability to change criteria based on the focus of their study. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare in Grand Teton (n = 106) and Yellowstone (n = 294). A higher percentage of lakes in Grand Teton than in Yellowstone were predicted to be sensitive to atmospheric deposition in all three bins. For Grand Teton, 7 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-50 bin, 36 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 59 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-200 bin. The elevation of the lake outlet and the area of the basin with northeast aspects were determined to be statistically significant and were used as the explanatory variables in the multivariate logistic regression model for the 0-100 bin. For Yellowstone, results indicated that 13 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 27 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-200 bin. Only the elevation of the lake outlet was determined to be statistically significant and was used as the explanatory variable for the 0-100 bin. The lakes that exceeded 60-percent probability of having an acid-neutralizing capacity concentration in the 0-100 bin, and therefore had the greatest sensitivity to acidification from atmospheric deposition, are located at elevations greater than 2,790 meters in Grand Teton, and greater than 2,590 meters in Yellowstone.
Publication type Report
Publication Subtype USGS Numbered Series
Title Sensitivity of alpine and subalpine lakes to acidification from atmospheric deposition in Grand Teton National Park and Yellowstone National Park, Wyoming
Series title Scientific Investigations Report
Series number 2005-5023
DOI 10.3133/sir20055023
Edition -
Year Published 2005
Language ENGLISH
Description 41 p.
Google Analytic Metrics Metrics page
Additional publication details