Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

Scientific Investigations Report 2005-5033
Prepared in cooperation with Idaho Department of Environmental Quality
By: , and 

Links

Abstract

The Idaho statewide surface-water-quality monitoring network consists of 56 sites that have been monitored from 1989 through 2002 to provide data to document status and changes in the quality of Idaho streams. Sampling at 33 sites has covered a wide range of flows and seasons that describe water-quality variations representing both natural conditions and human influences. Targeting additional high- or low-flow sampling would better describe conditions at 20 sites during hydrologic extremes. At the three spring site types, sampling covered the range of flow conditions from 1989 through 2002 well. However, high flows at these sites since 1989 were lower than historical high flows as a result of declining ground-water levels in the Snake River Plain. Summertime stream temperatures at 45 sites commonly exceeded 19 and 22 degrees Celsius, the Idaho maximum daily mean and daily maximum criteria, respectively, for the protection of coldwater aquatic life. Criteria exceedances in stream basins with minimal development suggest that such high temperatures may occur naturally in many Idaho streams. Suspended-sediment concentrations were generally higher in southern Idaho than in central and northern Idaho, and network data suggest that the turbidity criteria are most likely to be exceeded at sites in southern Idaho and other sections of the Columbia Plateaus geomorphic province. This is probably because this province has more fine-grained soils that are subject to erosion and disturbance by land uses than the Northern Rocky Mountains province of northern and central Idaho has. Although erodable soils are likely a cause of elevated turbidities, suspended-sediment concentrations were not strongly correlated with turbidities. Dissolved-solids and hardness concentrations were strongly correlated. This is probably because the limestones present in some basins are more soluble than the igneous rocks that predominate in others. Low hardness in streams of northern Idaho, where watersheds are underlain by resistant igneous rocks, enhances the toxicity of some trace elements to aquatic life in these streams. Only a few measurements of dissolved-oxygen concentrations at six sites were less than 6.0 milligrams per liter, the Idaho minimum criterion for protection of aquatic organisms. High supersaturations of dissolved oxygen at four sites suggest excessive photosynthetic activity by algal communities. Nighttime monitoring would help determine whether dissolved-oxygen concentrations at these sites might fall below the Idaho criterion. Data from four sites suggest that dissolved-oxygen concentrations may have decreased over time. The pH at 15 sites sometimes fell outside the range specified (6.5-9.0) for the protection of aquatic organisms in Idaho streams. Values exceeded 9.0 at 10 sites, probably because of excessive algal photosynthetic activity in waters where carbonate rocks are present. Values were sometimes less than 6.5 at five sites in areas of mountain bedrock geology where pH is likely to be naturally low. Mining activities also may contribute to low pH at some of these sites. Inorganic nitrogen and total phosphorus concentrations commonly exceeded those considered sufficient for supporting excess algal production (0.3 and 0.1 milligrams per liter, respectively). Data from a few sites suggest that nitrogen and(or) phosphorus concentrations might be changing over time. Low concentrations of nitrogen and phosphorus at six sites, most representing forested basins, might make them good candidates as reference sites that represent naturally occurring nutrient concentrations. Trace elements examined for this report were cadmium, copper, lead, mercury, selenium, and zinc. In water, many trace-element concentrations were below the minimum analytical reporting levels. Concentrations of cadmium, copper, lead, and zinc generally were highest in mined and other mineral-rich basins in northern Idaho. Concentrations of mercury were

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002
Series title Scientific Investigations Report
Series number 2005-5033
DOI 10.3133/sir20055033
Edition Version 1.1, July 7, 2005; Version 1.2, October 25, 2005
Year Published 2005
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Idaho Water Science Center
Description viii, 66 p.; Appendixes A-C
Time Range Start 1989-01-01
Time Range End 2002-12-31
Country United States
State Idaho
Google Analytic Metrics Metrics page
Additional publication details