Sinkhole flooding in Murfreesboro, Rutherford County, Tennessee, 2001-02

Scientific Investigations Report 2005-5281
Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
By:  and 

Links

Abstract

The U.S. Geological Survey, in cooperation with the City of Murfreesboro, Tennessee, conducted an investigation from January 2001 through April 2002 to delineate sinkholes and sinkhole watersheds in the Murfreesboro area and to characterize the hydrologic response of sinkholes to major rainfall events. Terrain analysis was used to define sinkholes and delineate the sinkhole drainage areas. Flooding in 78 sinkholes in three focus areas was identified and tracked using aerial photography following three major storms in February 2001, January 2002, and March 2002. The three focus areas are located to the east, north, and northwest of Murfreesboro and are underlain primarily by the Ridley Limestone with some outcrops of the underlying Pierce Limestone. The observed sinkhole flooding is controlled by water inflow, water outflow, and the degree of the hydraulic connection (connectivity) to a ground-water conduit system. The observed sinkholes in the focus areas are grouped into three categories based on the sinkhole morphology and the connectivity to the ground-water system as indicated by their response to flooding. The three types of sinkholes described for these focus areas are pan sinkholes with low connectivity, deep sinkholes with high connectivity, and deep sinkholes with low connectivity to the ground-water conduit system. Shallow, broad pan sinkholes flood as water inflow from a storm inundates the depression at land surface. Water overflow from one pan sinkhole can flow downgradient and become inflow to a sinkhole at a lower altitude. Land-surface modifications that direct more water into a pan sinkhole could increase peak-flood altitudes and extend flood durations. Land-surface modifications that increase the outflow by overland drainage could decrease the flood durations. Road construction or alterations that reduce flow within or between pan sinkholes could result in increased flood durations. Flood levels and durations in the deeper sinkholes observed in the three focus areas are primarily affected by the connectivity with the ground-water conduit system. Deep sinkholes with a relatively high connectivity to the ground-water system fill quickly after a storm, and drain rapidly after the storm ends, and water levels decline as much as 3 to 5 feet per day in the first 2 to 3 days after a major storm. These sinkholes store the initial floodwater and then rapidly transmit water to the ground-water conduit system (high outflow). Land-surface changes that direct more water into the sinkhole may increase the flood peaks, but may not have a substantial effect on the flood durations. Deep sinkholes that have low connectivity to the ground-water conduit system may have a delayed peak water level and may drain slowly, only about 2 to 3 feet in 10 days. Outflow from these sinkholes is limited or restricted by low connectivity to the ground-water conduit system. Land-surface alterations that increase the inflow to the sinkholes can result in high flood levels or increased flood durations.
Publication type Report
Publication Subtype USGS Numbered Series
Title Sinkhole flooding in Murfreesboro, Rutherford County, Tennessee, 2001-02
Series title Scientific Investigations Report
Series number 2005-5281
DOI 10.3133/sir20055281
Edition -
Year Published 2006
Language ENGLISH
Description vi, 38 p. : ill. (some col.), col. maps ; 28 cm.
Time Range Start 2001-01-01
Time Range End 2002-12-31
Google Analytic Metrics Metrics page
Additional publication details