Use of Borehole-Radar Methods to Monitor a Steam-Enhanced Remediation Pilot Study at a Quarry at the Former Loring Air Force Base, Maine

Scientific Investigations Report 2006-5191
Prepared in cooperation with the U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Superfund Remediation and Technology Innovation
By: , and 

Links

Abstract

Single-hole radar reflection and crosshole radar tomography surveys were used in conjunction with conventional borehole-geophysical methods to evaluate the effectiveness of borehole-radar methods for monitoring the movement of steam and heat through fractured bedrock. The U.S. Geological Survey, in cooperation with U.S. Environmental Protection Agency (USEPA), conducted surveys in an abandoned limestone quarry at the former Loring Air Force Base during a field-scale, steam-enhanced remediation (SER) pilot project conducted by the USEPA, the U.S. Air Force, and the Maine Department of Environmental Protection to study the viability of SER to remediate non-aqueous phase liquid contamination in fractured bedrock. Numerical modeling and field experiments indicate that borehole-radar methods have the potential to monitor the presence of steam and to measure large temperature changes in the limestone matrix during SER operations. Based on modeling results, the replacement of water by steam in fractures should produce a decrease in radar reflectivity (amplitude of the reflected wave) by a factor of 10 and a change in reflection polarity. In addition, heating the limestone matrix should increase the bulk electrical conductivity and decrease the bulk dielectric permittivity. These changes result in an increase in radar attenuation and an increase in radar-wave propagation velocity, respectively. Single-hole radar reflection and crosshole radar tomography data were collected in two boreholes using 100-megahertz antennas before the start of steam injection, about 10 days after the steam injection began, and 2 months later, near the end of the injection. Fluid temperature logs show that the temperature of the fluid in the boreholes increased by 10?C (degrees Celsius) in one borehole and 40?C in the other; maximum temperatures were measured near the bottom of the boreholes. The results of the numerical modeling were used to interpret the borehole-radar data. Analyses of the single-hole radar reflection data showed almost no indication that steam replaced water in fractures near the boreholes because (1) no change of polarity was observed in the radar reflections; (2) variations in the measured traveltimes were unsubstantial; and (3) most of the observed decreases in reflectivity were too small to have resulted from the replacement of water by steam. Analyses of the crosshole radar tomography data also support the conclusion that steam did not replace water in the fractures around the boreholes because traveltime-difference and attenuation-difference tomograms showed only small decreases in velocity and small increases in attenuation accompanying the steam injection. The radar data are consistent with an increase in the conductivity of the limestone as a result of heating of the limestone matrix near the boreholes. Single-hole radar reflection data collected near the end of the steam injection near the bottom of the borehole with the largest temperature increase showed substantial attenuation. Also, reflector analysis showed small decreases in the amplitudes of radar-wave reflections in data collected before injection and data collected near the end of the collection period. In the crosshole radar tomography data, decreases in velocity and small increases in attenuation also are consistent with temperature increases in the matrix.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Use of borehole-radar methods to monitor a steam-enhanced remediation pilot study at a quarry at the former Loring Air Force Base, Maine
Series title Scientific Investigations Report
Series number 2006-5191
DOI 10.3133/sir20065191
Year Published 2007
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Branch of Geophysics, Office of Ground Water, Toxic Substances Hydrology Program
Description ix, 35 p.
Country United States
State Maine
Other Geospatial former Loring Air Force Base
Google Analytic Metrics Metrics page
Additional publication details