Nitrogen Species in Soil, Sediment, and Ground Water at a Former Sewage-Treatment Wastewater Lagoon: Naval Air Station Whidbey Island, Island County, Washington

Scientific Investigations Report 2007-5075
Prepared in cooperation with the U.S. Department of the Navy, Navy Region Northwest
By: , and 

Links

Abstract

The potential for contamination of ground water from remnant sewage sludge in re-graded sediments of a deconstructed sewage-treatment lagoon was evaluated. Ground-water levels were measured in temporary drive-point wells, and ground-water samples were collected and analyzed for nutrients and other water-quality characteristics. Composite soil and sediment samples were collected and analyzed for organic carbon and nitrogen species. Multiple lines of evidence, including lack of appreciable organic matter in sediments of the former lagoon, agronomic analysis of nitrogen, the sequestration of nitrogen in the developing soils at the former lagoon, and likely occurrence of peat deposits within the aquifer material, suggest that the potential for substantial additions of nitrogen to ground water beneath the former sewage lagoon resulting from remnant sewage sludge not removed from the former lagoon are small. Concentrations of nitrogen species measured in ground-water samples were small and did not exceed the established U.S. Environmental Protection Agency's maximum contaminant levels for nitrate (10 milligrams per liter). Concentrations of nitrate in ground-water samples were less than the laboratory reporting limit of 0.06 milligram per liter. Seventy to 90 percent of the total nitrogen present in ground water was in the ammonia form with a maximum concentration of 7.67 milligrams per liter. Concentrations of total nitrogen in ground water beneath the site, which is the sum of all forms of nitrogen including nitrate, nitrite, ammonia, and organic nitrogen, ranged from 1.15 to 8.44 milligrams per liter. Thus, even if all forms of nitrogen measured in ground water were converted to nitrate, the combined mass would be less than the maximum contaminant level. Oxidation-reduction conditions in ground water beneath the former sewage lagoon were reducing. Given the abundant supply of ambient organic carbon in the subsurface and in ground water at the former lagoon, any nitrate that may leach from residual sludge and be transported to ground water with recharge is expected to be quickly denitrified or transformed to nitrite and ammonia under the strongly reducing geochemical conditions that are present. Concentrations of organic carbon, the primary constituent of sewage sludge, in sediments of the former sewage lagoon were less than 1 percent, indicating a near absence of organic matter. The amount of total nitrogen present in the sediments at the former sewage lagoon was only about 25 percent of the amount typically present in developed agricultural soils. The lack of substantial carbon and nitrogen in sediments of the former sewage lagoon indicates that surficial sediments of the former lagoon are essentially devoid of residual sewage sludge. The largest concentration of total nitrogen measured in soil samples from the former sewage lagoon (330 milligrams per kilogram) was used to calculate an estimate of the amount of nitrogen that might be leached from residual sewage sludge by recharge. During the first two years following deconstruction of the former sewage lagoon, the concentration of total nitrogen in recharge leachate might exceed 10 milligrams per liter but the recharge leachate would not likely result in substantial increases in the nitrate concentration in ground water to concentrations greater than the drinking-water maximum contaminant level of 10 milligrams per liter.
Publication type Report
Publication Subtype USGS Numbered Series
Title Nitrogen Species in Soil, Sediment, and Ground Water at a Former Sewage-Treatment Wastewater Lagoon: Naval Air Station Whidbey Island, Island County, Washington
Series title Scientific Investigations Report
Series number 2007-5075
DOI 10.3133/sir20075075
Edition -
Year Published 2007
Language ENGLISH
Publisher Geological Survey (U.S.)
Contributing office(s) Washington Water Science Center
Description iv, 15 p.
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details