Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

Scientific Investigations Report 2009-5016
Prepared in cooperation with Blaine County, City of Hailey, City of Ketchum, The Nature Conservancy, City of Sun Valley, Sun Valley Water and Sewer District, Blaine Soil Conservation District, City of Bellevue, and Citizens for Smart Growth



The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through five main sources (from largest to smallest): Silver Creek streamflow gain, ground-water pumpage, Big Wood River streamflow gain, direct evapotranspiration from riparian vegetation, and subsurface outflow (treated separately). Total estimated mean 1995-2004 annual outflow or discharge from the aquifer system is 250,000 acre-ft/yr (350 ft3/s). Estimated total discharge is 240,000 acre-ft/yr (330 ft3/s) for both the wet year 1995 and the dry year 2001. The budget residual is the difference between estimated ground-water inflow and outflow and encompasses subsurface outflow, ground-water storage change, and budget error. For 1995-2004, mean annual inflow exceeded outflow by 20,000 acre-ft/yr (28 ft3/s); for the wet year 1995, mean annual inflow exceeded outflow by 30,000 acre-ft/yr (41 ft3/s); for the dry year 2001, mean annual outflow exceeded inflow by 20,000 acre-ft/yr (28 ft3/s). These values represent 8, 13, and 8 percent, respectively, of total outflows for the same periods. It is difficult to differentiate the relative contributions of the three residual components, although the estimated fluctuations between the wet and dry year budgets likely are primarily caused by changes in ground-water storage. The individual components in the wet and dry year ground-water budgets responded in a consistent manner to changes in precipitation and temperature. Although the ground-water budgets for the three periods indicated that ground-water storage is replenished in wet years, statistical analyses by Skinner and others (2007) suggest that such replenishment is not complete and over the long term more water is removed from storage than is replaced. In other words, despite restoration of water to ground-water storage in wet years, changes have occurred in either recharge and (or) discharge to cause ground-water storage to decline over time. Such changes may include, but are not limited to: lining or abandoning canals and ditches, conversion of surface-water irriga

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004
Series title Scientific Investigations Report
Series number 2009-5016
DOI 10.3133/sir20095016
Edition -
Year Published 2009
Language ENGLISH
Publisher U.S. Geological Survey
Contributing office(s) Idaho Water Science Center
Description vi, 37 p.
Time Range Start 1995-01-01
Time Range End 2004-12-31
Google Analytic Metrics Metrics page
Additional publication details