DayCent-Chem simulations of ecological and biogeochemical processes of eight mountain ecosystems in the United States

Scientific Investigations Report 2009-5150
Prepared in cooperation with Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado
By: , and 

Links

Abstract

Atmospheric deposition of nitrogen (N) and sulfur (S) cause complex responses in ecosystems, from fertilization to forest ecosystem decline, freshwater eutrophication to acidification, loss of soil base cations, and alterations of disturbance regimes. DayCent-Chem, an ecosystem simulation model that combines ecosystem nutrient cycling and plant dynamics with aqueous geochemical equilibrium calculations, was developed to address ecosystem responses to combined atmospheric N and S deposition. It is unique among geochemically-based models in its dynamic biological cycling of N and its daily timestep for investigating ecosystem and surface water chemical response to episodic events.

The model was applied to eight mountainous watersheds in the United States. The sites represent a gradient of N deposition across locales, from relatively pristine to N-saturated, and a variety of ecosystem types and climates. Overall, the model performed best in predicting stream chemistry for snowmelt-dominated sites. It was more difficult to predict daily stream chemistry for watersheds with deep soils, high amounts of atmospheric deposition, and a large degree of spatial heterogeneity. DayCent-Chem did well in representing plant and soil carbon and nitrogen pools and fluxes. Modeled stream nitrate (NO3-) and ammonium (NH4+) concentrations compared well with measurements at all sites, with few exceptions. Simulated daily stream sulfate (SO42-) concentrations compared well to measured values for sites where SO42- deposition has been low and where SO42- adsorption/desorption reactions did not seem to be important. The concentrations of base cations and silica in streams are highly dependent on the geochemistry and weathering rates of minerals in each catchment, yet these were rarely, if ever, known. Thus, DayCent-Chem could not accurately predict weathering products for some catchments. Additionally, few data were available for exchangeable soil cations or the magnitude of base cation deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites.

The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title DayCent-Chem simulations of ecological and biogeochemical processes of eight mountain ecosystems in the United States
Series title Scientific Investigations Report
Series number 2009-5150
DOI 10.3133/sir20095150
Year Published 2009
Language English
Publisher U.S. Geological Survey
Contributing office(s) Colorado Water Science Center, Fort Collins Science Center
Description xiv, 174 p.
Country United States
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details