Analysis of the transport of sediment by the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, after the May 2006 flood

Scientific Investigations Report 2011-5088
Prepared in cooperation with the Federal Emergency Management Agency and the New Hampshire Department of Environmental Services
By:

Links

Abstract

During May 13-16, 2006, rainfall in excess of 8.8 inches flooded central and southern New Hampshire. On May 15, 2006, a breach in a bank of the Suncook River in Epsom, New Hampshire, caused the river to follow a new path. In order to assess and predict the effect of the sediment in, and the subsequent flooding on, the river and flood plain, a study by the U.S. Geological Survey (USGS) characterizing sediment transport in the Suncook River was undertaken in cooperation with the Federal Emergency Management Agency (FEMA) and the New Hampshire Department of Environmental Services (NHDES). The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used to simulate flow and the transport of noncohesive sediments in the Suncook River from the upstream corporate limit of Epsom to the river's confluence with the Merrimack River in the Village of Suncook (Allenstown and Pembroke, N.H.), a distance of approximately 16 miles. In addition to determining total sediment loads, analyses in this study reflect flooding potentials for selected recurrence intervals that are based on the Suncook River streamgage flow data (streamgage 01089500) and on streambed elevations predicted by HEC-RAS for the end of water year 2010 (September 30, 2010) in the communities of Epsom, Pembroke, and Allenstown. This report presents changes in streambed and water-surface elevations predicted by the HEC-RAS model using data through the end of water year 2010 for the 50-, 10-, 2-, 1-, 0.2-percent annual exceedence probabilities (2-, 10-, 50-, 100-, and 500-year recurrence-interval floods, respectively), calculated daily and annual total sediment loads, and a determination of aggrading and degrading stream reaches. The model was calibrated and evaluated for a 400-day span from May 8, 2008 through June 11, 2009; these two dates coincided with field collection of stream cross-sectional elevation data. Seven sediment-transport functions were evaluated in the model with the Laursen (Copeland) sediment-transport function best describing the sediment load, transport behavior, and changes in streambed elevation for the specified spatial and temporal conditions of the 400-day calibration period. Simulation results from the model and field-collected sediment data indicate that, downstream of the avulsion channel, for the average daily mean flow during the study period, approximately 100 to 400 tons per day of sediment (varying with daily mean flow) was moving past the Short Falls Road Bridge over the Suncook River in Epsom, while approximately 0.05 to 0.5 tons per day of sediment was moving past the Route 28 bridge in Pembroke and Allenstown, and approximately 1 to 10 tons per day was moving past the Route 3 bridge in Pembroke and Allenstown. Changes in water-surface elevation that the model predicted for the end of water year 2010 to be a result of changes in streambed elevation ranged from a mean increase of 0.20 feet (ft) for the 50-percent annual exceedence-probability flood (2-year recurrence-interval flood) due to an average thalweg increase of 0.88 ft between the Short Falls Road Bridge and the Buck Street Dams in Pembroke and Allenstown to a mean decrease of 0.41 ft for the 50-percent annual exceedence-probability flood due to an average thalweg decrease of 0.49 ft above the avulsion in Epsom. An analysis of shear stress (force created by a fluid acting on sediment particles) was undertaken to determine potential areas of erosion and deposition. Based on the median grain size (d50) and shear stress analysis, the study found that in general, for floods greater than the 50-percent annual exceedence probability flood, the shear stress in the streambed is greater than the critical shear stress in much of the river study reach. The result is an expectation of streambed-sediment movement and erosion even at high exceedence-probability events, pending although the stream ultimately attains equilibrium through stream-stabilization measures or the adjustment of the river over time. The potential for aggradation in the Suncook River is greatest in the reach downstream of the avulsion. Specifically, these reaches are (1) downstream of the former sand pit from adjacent to Round Pond to downstream of the flood chute at the large meander bends, and (2) downstream of the Short Falls Road Bridge to approximately 3,800 ft upstream of the Route 28 bridge. The potential for degradation-net lowering of the streambed-is greatest for the reach upstream of the avulsion to the Route 4 bridge.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Analysis of the transport of sediment by the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, after the May 2006 flood
Series title Scientific Investigations Report
Series number 2011-5088
DOI 10.3133/sir20115088
Year Published 2011
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) New Hampshire-Vermont Water Science Center
Description x, 69 p.; Appendices
Time Range Start 2008-05-08
Time Range End 2010-09-30
Country United States
State New Hampshire
County Merrimack
City Epsom;Pembroke;Allenstown
Other Geospatial Suncook River
Google Analytic Metrics Metrics page
Additional publication details