Relation between organic-wastewater compounds, groundwater geochemistry, and well characteristics for selected wells in Lansing, Michigan

Scientific Investigations Report 2013-5139
Prepared in cooperation with the Tri-County Regional Planning Commission
By:  and 

Links

Abstract

In 2010, groundwater from 20 Lansing Board of Water and Light (BWL) production wells was tested for 69 organic-wastewater compounds (OWCs). The OWCs detected in one-half of the sampled wells are widely used in industrial and environmental applications and commonly occur in many wastes and stormwater. To identify factors that contribute to the occurrence of these constituents in BWL wells, the U.S. Geological Survey (USGS) interpreted the results of these analyses and related detections of OWCs to local characteristics and groundwater geochemistry. Analysis of groundwater-chemistry data collected by the BWL during routine monitoring from 1969 to 2011 indicates that the geochemistry of the BWL wells has changed over time, with the major difference being an increase in sodium and chloride. The concentrations of sodium and chloride were positively correlated to frequency of OWC detections. The BWL wells studied are all completed in the Saginaw aquifer, which consists of water-bearing sandstones of Pennsylvanian age. The Saginaw aquifer is underlain by the Parma-Bayport aquifer, and overlain by the Glacial aquifer. Two possible sources of sodium and chloride were evaluated: basin brines by way of the Parma-Bayport aquifer, and surficial sources by way of the Glacial aquifer. To determine if water from the underlying aquifer had influenced well-water geochemistry over time, the total dissolved solids concentration and changes in major ion concentrations were examined with respect to well depth, age, and pumping rate. To address a possible surficial source of sodium and chloride, 25 well, aquifer, or hydrologic characteristics, and 2 groundwater geochemistry variables that might influence whether, or the rate at which, water from the land surface could reach each well were compared to OWC detections and well chemistry. The statistical tests performed during this study, using available variables, indicated that reduced time of travel of water from the land surface to the well opening was significantly correlated with detections of OWCs. No specific well or aquifer characteristic was correlated with OWC detections; however, wells with detections tended to have less modeled confining material thickness (as simulated in the regional groundwater flow model), which is an estimate of the amount of clay or shale between the Glacial and Saginaw aquifers. Additional analyses and collection of other data would be required to more conclusively identify the source and to determine the potential vulnerability of other wells because each BWL well may have a somewhat unique set of characteristics that governs its response to pumping. Therefore, it is possible that a relevant explanatory variable was not included in this analysis. The current patterns of geochemistry, and the relation between these patterns and volume of pumpage for the BWL wells, indicates other wells may be susceptible to OWCs in the future.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Relation between organic-wastewater compounds, groundwater geochemistry, and well characteristics for selected wells in Lansing, Michigan
Series title Scientific Investigations Report
Series number 2013-5139
DOI 10.3133/sir20135139
Year Published 2013
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Michigan Water Science Center
Description v, 36 p.
Country United States
State Michigan
County Clinton County;Eaton County;Ingham County
City Lansing
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details