thumbnail

Analysis of floods, including the tropical storm Irene inundation, of the Ottauquechee River in Woodstock, Bridgewater, and Killington and of Reservoir Brook in Bridgewater and Plymouth, Vermont

Scientific Investigations Report 2014-5214

Prepared in cooperation with the U.S. Army Corps of Engineers
By:
https://doi.org/10.3133/sir20145214

Links

Abstract

Digital flood-inundation maps were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, New York District for a 25-mile reach of the Ottauquechee River and a 2-mile reach of Reservoir Brook in Vermont. The reach of the Ottauquechee River that was studied extends from River Road Bridge in Killington, Vt., to the Taftsville Dam in the village of Taftsville, in the town of Woodstock, Vt., and the reach of Reservoir Brook extends from a location downstream from the Woodward Reservoir in Plymouth, Vt., to its confluence with the Ottauquechee River in Bridgewater, Vt. The inundation maps depict estimates of the areal extent of flooding corresponding to the 1-percent annual exceedance probability (AEP) flood (also referred to as the 100-year flood) and the peak of the tropical storm Irene flood of August 28, 2011, which was greater than the 0.2-percent AEP flood (also referred to as the 500-year flood), as referenced to the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900).

 

In addition to the two digital flood inundation maps, flood profiles were created that depict the study reach flood elevation of tropical storm Irene of August 2011 and the 10-, 2-, 1-, and 0.2-percent AEP floods, also known as the 10-, 50-, 100-, and 500-year floods, respectively. The 10-, 2-, 1-, and 0.2-percent AEP flood discharges were determined using annual peak flow data from the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). Flood profiles were computed for the Ottauquechee River and Reservoir Brook by means of a one-dimensional step-backwater model. The model was calibrated using documented high-water marks of the peak of the tropical storm Irene flood of August 2011 as well as stage discharge data as determined for USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). The simulated water-surface profiles were combined with a digital elevation model within a geographic information system to delineate the areas flooded during tropical storm Irene and for the 1-percent AEP water-surface profile. The digital elevation model data were derived from light detection and ranging (lidar) data obtained for a 3,281-foot (1,000-meter) corridor along the Ottauquechee River study reach and were augmented with 33-foot (10- meter) contour interval data in the modeled flood-inundation areas outside the lidar corridor. The 33-foot (10-meter) contour interval USGS 15-minute quadrangle topographic digital raster graphics map used to augment lidar data was produced at a scale of 1:24,000. The digital flood inundation maps and flood profiles along with information regarding current stage from USGS streamgages on the Internet provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

Study Area

Additional publication details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Analysis of floods, including the tropical storm Irene inundation, of the Ottauquechee River in Woodstock, Bridgewater, and Killington and of Reservoir Brook in Bridgewater and Plymouth, Vermont
Series title:
Scientific Investigations Report
Series number:
2014-5214
DOI:
10.3133/sir20145214
Year Published:
2014
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
New England Water Science Center
Description:
Report: vii, 11 p.; Readme; 5 Appendixes
Country:
United States
State:
Vermont
Other Geospatial:
Ottauquechee River, Reservoir Brook
Online Only (Y/N):
Y
Additional Online Files (Y/N):
N