Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Rincon, Effingham County, Georgia

Scientific Investigations Report 2015-5072
Prepared in cooperation with the City of Rincon, Georgia
By:  and 

Links

Abstract

Steady-state simulations using a revised regional groundwater-flow model based on MODFLOW were run to assess the potential long-term effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) at well (36S048) near the City of Rincon in coastal Georgia near Savannah. Simulated pumping of well 36S048 at a rate of 1,000 gallons per minute (gal/min; or 1.44 million gallons per day [Mgal/d]) indicated a maximum drawdown of about 6.8 feet (ft) in the UFA directly above the pumped well and at least 1 ft of drawdown within a nearly 400-square-mile area (scenario A). Induced vertical leakage from the UFA provided about 99 percent of the water to the pumped well. Simulated pumping of well 36S048 indicated increased downward leakage in all layers above the LFA, decreased upward leakage in all layers above the LFA, increased inflow to and decreased outflow from lateral specified-head boundaries in the UFA and LFA, and an increase in the volume of induced inflow from the general-head boundary representing outcrop units. Water budgets for scenario A indicated that changes in inflows and outflows through general-head boundaries would compose about 72 percent of the simulated pumpage from well 36S048, with the remaining 28 percent of the pumped water derived from flow across lateral specified-head boundaries.

Additional steady-state simulations were run to evaluate a pumping rate in the UFA of 292 gal/min (0.42 Mgal/d), which would produce the equivalent maximum drawdown in the UFA as pumping from well 36S048 in the LFA at a rate of 1,000 gal/min (called the drawdown offset; scenario B). Simulated pumping in the UFA for the drawdown offset produced about 6.7 ft of drawdown, comparable to 6.8 ft of drawdown in the UFA simulated in scenario A. Water budgets for scenario B also provided favorable comparisons with scenario A, indicating that 69 percent of the drawdown-offset pumpage (0.42 Mgal/d) in the UFA originates as increased inflow and decreased outflow across general-head boundaries from overlying units in the surficial and Brunswick aquifer systems and that the remaining simulated pumpage originates as flow across general- and specified-head boundaries within the UFA.

A steady-state simulation representing implementation of drawdown-offset-pumping reductions totaling 292 gal/min at Rincon UFA production wells 36S034 and 36S035 and pumping from the new LFA well 36S048 at 1,000 gal/min (scenario C) resulted in decreased magnitude and areal extent of drawdown in the UFA compared with scenario A. In the latter scenario, the LFA well was pumped without UFA drawdown-offset-pumping reductions. Water budgets for scenario C yielded percentage contributions from flow components that were consistent with those from scenario B. Specifically, 69 percent of the increased pumping in scenario C originated from general-head boundaries from overlying units of the surficial and Brunswick aquifer systems and the balance of flow was derived from general- and specified-head boundaries in the UFA. In all scenarios, the placement of model boundaries and type of boundary exerted the greatest control on overall groundwater flow and interaquifer leakage in the system.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Rincon, Effingham County, Georgia
Series title Scientific Investigations Report
Series number 2015-5072
DOI 10.3133/sir20155072
Year Published 2015
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) South Atlantic Water Science Center
Description viii, 36 p.
Country United States
State Georgia
County Effingham County
Other Geospatial Rincon
Online Only (Y/N) Y
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details