thumbnail

Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

Scientific Investigations Report 2016-5139-A

Prepared in cooperation with the Metropolitan Council and Minnesota Department of Health
By:
ORCID iD , ORCID iD , , ORCID iD , ORCID iD , ORCID iD , , and
https://doi.org/10.3133/sir20165139A

Links

Abstract

Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.

Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2) closed-basin lake-level changes reflected groundwater-level changes in the Quaternary, Prairie du Chien, and Jordan aquifers; (3) the installation of outlet-control structures, such as culverts and weirs, resulted in smaller multiyear lake-level changes than lakes without outlet-control structures; (4) water levels in lakes primarily overlying Superior Lobe deposits were significantly more variable than lakes primarily overlying Des Moines Lobe deposits; (5) lake-level declines were larger with increasing mean lake-level elevation; and (6) the frequency of some of these characteristics varies by landscape position. Flow-through lakes and lakes with outlet-control structures were more common in watersheds with more than 50 percent urban development compared to watersheds with less than 50 percent urban development. A comparison of two 35-year periods during 1925–2014 revealed that variability of annual mean lake levels in flow-through lakes increased when annual precipitation totals were more variable, whereas variability of annual mean lake levels in closed-basin lakes had the opposite pattern, being more variable when annual precipitation totals were less variable.

Oxygen-18/oxygen-16 and hydrogen-2/hydrogen-1 ratios for water samples from 40 wells indicated the well water was a mixture of surface water and groundwater in 31 wells, whereas ratios from water sampled from 9 other wells indicated that water from these wells receive no surface-water contribution. Of the 31 wells with a mixture of surface water and groundwater, 11 were downgradient from White Bear Lake, likely receiving water from deeper parts of the lake.

Age dating of water samples from wells indicated that the age of water in the Prairie du Chien and Jordan aquifers can vary widely across the northeast Twin Cities Metropolitan Area. Estimated ages of recharge for 9 of the 40 wells sampled for chlorofluorocarbon concentrations ranged widely from the early 1940s to mid-1970s. The wide range in estimated ages of recharge may have resulted from the wide range in the open-interval lengths and depths for the wells.

Results from stable isotope analyses of water samples, lake-sediment coring, continuous seismic-reflection profiling, and water-level and flow monitoring indicated that there is groundwater inflow from nearshore sites and lake-water outflow from deep-water sites in White Bear Lake. Continuous seismic-reflection profiling indicated that deep sections of White Bear, Pleasant, Turtle, and Big Marine Lakes have few trapped gases and little organic material, which indicates where groundwater and lake-water exchanges are more likely. Water-level differences between White Bear Lake and piezometer and seepage measurements in deep waters of the lake indicate that groundwater and lake-water exchange is happening in deep waters, predominantly downgradient from the lake and into the lake sediment. Seepage fluxes measured in the nearshore sites of White Bear Lake generally were higher than seepage fluxes measured in the deep-water sites, which indicates that groundwater-inflow rates at most of the nearshore sites are higher than lake-water outflow from the deep-water sites.

Suggested Citation

Jones, P.M., Trost, J.J., Diekoff, A.L., Rosenberry, D.O., White, E.A., Erickson, M.L., Morel, D.L., and Heck, J.M., 2016, Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: U.S. Geological Survey Scientific Investigations Report 2016–5139–A, 86 p., http://dx.doi.org/10.3133/sir20165139A.

ISSN: 2328-0328 (online)

Study Area

Table of Contents

  • Acknowledgments
  • Abstract
  • Introduction
  • Methods of Study
  • Statistical Analysis of Lake Levels
  • Field Study of Groundwater and Surface-Water Exchanges
  • Implications
  • Summary
  • References Cited
  • Appendix 1. Additional Information for Lakes in the Northeast Twin Cities Metropolitan Area

Additional publication details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015
Series title:
Scientific Investigations Report
Series number:
2016-5139
Chapter:
A
DOI:
10.3133/sir20165139A
Year Published:
2016
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Minnesota Water Science Center
Description:
Report: x, 86 p.; 2 Tables; Appendix Tables
Larger Work Type:
Report
Larger Work Subtype:
USGS Numbered Series
Larger Work Title:
Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015 (Scientific Investigations Report 2016–5139)
Country:
United States
State:
Minnesota
Other Geospatial:
Twin Cities Metropolitan Area
Online Only (Y/N):
Y
Additional Online Files (Y/N):
Y