Characterization of streamflow, suspended sediment, and nutrients entering Galveston Bay from the Trinity River, Texas, May 2014–December 2015

Scientific Investigations Report 2016-5177
Prepared in cooperation with the Texas Water Development Board and the Galveston Bay Estuary Program
By:  and 

Links

Abstract

The U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board and the Galveston Bay Estuary Program, collected streamflow and water-quality data at USGS streamflow-gaging stations in the lower Trinity River watershed from May 2014 to December 2015 to characterize and improve the current understanding of the quantity and quality of freshwater inflow entering Galveston Bay from the Trinity River. Continuous streamflow records at four USGS streamflow-gaging stations were compared to quantify differences in streamflow magnitude between upstream and downstream reaches of the lower Trinity River. Water-quality conditions were characterized from discrete nutrient and sedi­ment samples collected over a range of hydrologic conditions at USGS streamflow-gaging station 08067252 Trinity River at Wallisville, Tex. (hereinafter referred to as the “Wallisville site”), approximately 4 river miles upstream from where the Trinity River enters Galveston Bay.

Based on streamflow records, annual mean outflow from Livingston Dam into the lower Trinity River was 2,240 cubic feet per second (ft3/s) in 2014 and 22,400 ft3/s in 2015, the second lowest and the highest, respectively, during the entire period of record (1966–2015). During this study, only about 54 percent of the total volume measured at upstream sites was accounted for at the Wallisville site as the Trinity River enters Galveston Bay. This difference in water volumes between upstream sites and the Wallisville site indicates that at high flows a large part of the volume released from Lake Livingston does not reach Galveston Bay through the main channel of the Trinity River. These findings indicate that water likely flows into wetlands and water bodies surrounding the main channel of the Trinity River before reaching the Wallisville site and is being stored or discharged through other channels that flow directly into Galveston Bay.

To characterize suspended-sediment concentrations and loads in Trinity River inflow to Galveston Bay, a regression model was developed to estimate suspended-sediment concentrations by using acoustic backscatter data as a surrogate. The model yielded an adjusted coefficient of determination value of 0.92 and a root mean square error of 1.65 milligrams per liter (mg/L). The mean absolute percentage error between measured and estimated suspended-sediment concentration was 35 percent. During this study, estimated suspended-sediment concentrations ranged from 2 to 701 mg/L, with a mean of 97 mg/L. Suspended-sediment concentrations varied in response to changes in discharge, with peak suspended-sediment concentrations occurring 1 to 2 days before the peak discharge for each event. The total suspended-sediment load at the Wallisville site during May 2014–December 2015 was approximately 2,200,000 tons, with a minimum monthly suspended-sediment load of 100 tons in October 2014 and a maximum monthly load of 441,000 tons in November 2015.

Results from nutrient samples collected at the Wallisville site indicate that total nitrogen and total phosphorus concen­trations fluctuated at a similar rate, with the highest nutrient concentrations occurring during periods of high flow corresponding to releases from Lake Livingston. The mean concen­trations of total nitrogen and total phosphorus were approxi­mately 75 percent higher during high flow releases than during periods of low flow, overshadowing variations in nutrient concentrations caused by seasonality at the Wallisville site.

Results from the study indicate nutrient delivery to Galveston Bay from the main channel of the Trinity River is likely controlled primarily by high-flow releases from Lake Livingston. For most samples collected at the Wallisville site, organic nitrogen was the predominant form of nitrogen; however, when discharge increased because of releases from Lake Livingston, the percentage of organic nitrogen typically decreased and the percentage of nitrate increased. The concentrations of total phosphorus also increased during high-flow events, likely as a result of suspended sediment within Lake Livingston releases and mobilization of sediment particles in the river channel and flood plain during these periods of high flow. The predominant source of phosphorous to Galveston Bay from the Trinity River is in particulate form closely tied to suspended-sediment concentrations. The changes in nutrient concentration and composition caused by releases from Lake Livingston during this study indicate the reservoir may play an important role in the delivery of nutrients into Galveston Bay. Further study is required to better understand the processes in Lake Livingston influencing the characteristics of nutrient and sediment inflow to Galveston Bay. With phosphorous concentrations correlated to suspended-sediment concentra­tions (coefficient of determination value of 0.75) and with the concentrations of nutrients changing as the discharge changes, the diversion of water and suspended sediment into surround­ing wetlands and channels outside of the main channel of the Trinity River may play a large role in regulating nutrient inputs into Galveston Bay.

Suggested Citation

Lucena, Zulimar, and Lee, M.T., 2017, Characterization of streamflow, suspended sediment, and nutrients entering Galveston Bay from the Trinity River, Texas, May 2014–December 2015: U.S. Geological Survey Scientific Investigations Report 2016–5177, 38 p., https://doi.org/10.3133/sir20165177.

ISSN: 2328-0328 (online)

ISSN: 2328-031X (print)

Study Area

Table of Contents

  • Abstract 
  • Introduction
  • Methods
  • Streamflow Characterization in the Lower Trinity River Watershed
  • Suspended-Sediment Concentrations and Loads 
  • Characterization of Water-Quality Conditions
  • Summary 
  • References Cited
  • Appendix 1. Model Archival Summary for Suspended-Sediment Concentration
    at U.S. Geological Survey Streamflow-Gaging Station 08067252 Trinity River
    at Wallisville, Texas 
Publication type Report
Publication Subtype USGS Numbered Series
Title Characterization of streamflow, suspended sediment, and nutrients entering Galveston Bay from the Trinity River, Texas, May 2014–December 2015
Series title Scientific Investigations Report
Series number 2016-5177
ISBN 978-1-4113-4107-4
DOI 10.3133/sir20165177
Year Published 2017
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Texas Water Science Center
Description vii, 37 p.
Country United States
State Texas
Other Geospatial Galveston Bay, Trinity River
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details