thumbnail

Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada

Scientific Investigations Report 2017-5072

Prepared in cooperation with the Utah Department of Natural Resources and the U.S. Bureau of Land Management
By:
ORCID iD
https://doi.org/10.3133/sir20175072

Links

Abstract

The groundwater model described in this report is a new version of previously published steady-state numerical groundwater flow models of the Great Basin carbonate and alluvial aquifer system, and was developed in conjunction with U.S. Geological Survey studies in Parowan, Pine, and Wah Wah Valleys, Utah. This version of the model is GBCAAS v. 3.0 and supersedes previous versions. The objectives of the model for Parowan Valley were to simulate revised conceptual estimates of recharge and discharge, to estimate simulated aquifer storage properties and the amount of reduction in storage as a result of historical groundwater withdrawals, and to assess reduction in groundwater withdrawals necessary to mitigate groundwater-level declines in the basin. The objectives of the model for the area near Pine and Wah Wah Valleys were to recalibrate the model using new observations of groundwater levels and evapotranspiration of groundwater; to provide new estimates of simulated recharge, hydraulic conductivity, and interbasin flow; and to simulate the effects of proposed groundwater withdrawals on the regional flow system. Meeting these objectives required the addition of 15 transient calibration stress periods and 14 projection stress periods, aquifer storage properties, historical withdrawals in Parowan Valley, and observations of water-level changes in Parowan Valley. 

Recharge in Parowan Valley and withdrawal from wells in Parowan Valley and two nearby wells in Cedar City Valley vary for each calibration stress period representing conditions from March 1940 to November 2013. Stresses, including recharge, are the same in each stress period as in the steady-state stress period for all areas outside of Parowan Valley. The model was calibrated to transient conditions only in Parowan Valley. Simulated storage properties outside of Parowan Valley were set the same as the Parowan Valley properties and are not considered calibrated. 

Model observations in GBCAAS v. 3.0 are groundwater levels at wells and discharge locations; water-level changes; and discharge to springs, evapotranspiration of groundwater, rivers, and lakes. All observations in the model outside of Parowan Valley are considered to represent steady-state conditions. Composite scaled sensitivities indicate the observations of discharge to rivers and springs provide more information about model parameters in the model focus area than do water-level observations. Water levels and water-level changes, however, provide the only information about specific yield and specific storage parameters and provide more information about recharge and withdrawals in Parowan Valley than any other observation group. 

Comparisons of simulated water levels and measured water levels in Parowan Valley indicated that the model fits the overall trend of declining water levels and provides reasonable estimates of long-term reduction in storage and of storage changes from 2012 to 2013. The conceptual and simulated groundwater budgets for Parowan Valley from November 2012 to November 2013 are similar, with recharge of about 20,000 acre-feet and discharge of about 45,000 acre-feet. In the simulation, historical withdrawals averaging about 28,000 acre-feet per year (acre-ft/yr) cause major changes in the groundwater system in Parowan Valley. These changes include the cessation of almost all natural discharge in the valley and the long-term removal of water from storage. 

Simulated recharge in Pine Valley of 11,000 acre-ft/yr and in Wah Wah Valley of 3,200 acre-ft/yr is substantially less in GBCAAS v. 3.0 than that simulated by previous model versions. In addition, the valleys have less simulated inflow from and outflow to other hydrographic areas than were simulated by previous model versions. The effects of groundwater development in these valleys, however, are independent of the amount of water recharging in and flowing through the valleys. Groundwater withdrawals in Pine and Wah Wah Valleys will decrease groundwater storage (causing drawdown) until discharge in surrounding areas and mountain springs around the two valleys is reduced by the rate of withdrawal. 

The model was used to estimate that reducing withdrawals in Parowan Valley from 35,000 to about 22,000 acre-ft/yr would likely stabilize groundwater levels in the valley if recharge varies as it did from about 1950 to 2012. The model was also used to demonstrate that withdrawals of 15,000 acre-ft/yr from Pine Valley and 6,500 acre-ft/yr from Wah Wah Valley could ultimately cause long-term steady-state water-level declines of about 1,900 feet near the withdrawal wells and of more than 5 feet in an area of about 10,500 square miles. The timing of drawdown and capture and the ultimate amount of drawdown are dependent on the proximity to areas of simulated natural groundwater discharge, simulated transmissivity, and simulated storage properties. The model projections are a representation of possible effects.

Suggested Citation

Brooks, L.E., 2017, Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada: U.S. Geological Survey Scientific Investigations Report 2017–5072, 77 p., 2 appendixes, https://doi.org/10.3133/sir20175072.

ISSN: 2328-0328 (online)

Study Area

Table of Contents

  • Abstract
  • Introduction
  • Transient Model
  • Boundary Conditions
  • Hydraulic Properties
  • Observations Used in Model Calibration
  • Need for Recalibration
  • Calibration
  • Model Evaluation
  • Model Results
  • Model Projection
  • Model Limitations
  • Appropriate Uses of the Model
  • Summary
  • References
  • Appendixes

Additional publication details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada
Series title:
Scientific Investigations Report
Series number:
2017-5072
DOI:
10.3133/sir20175072
Year Published:
2017
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Utah Water Science Center
Description:
Report: x, 77 p.; Appendix Tables; Data Release
Country:
United States
State:
Nevada, Utah
Online Only (Y/N):
Y