Stochastic Model for Simulating Souris River Basin Regulated Streamflow Upstream from Minot, North Dakota

Scientific Investigations Report 2018-5155
Prepared in cooperation with the North Dakota State Water Commission
By: , and 

Links

Abstract

The Souris River Basin is a 24,000 square-mile basin in the Provinces of Saskatchewan and Manitoba in Canada, and the State of North Dakota in the United States. Above-average snowpack during the winter of 2010–11, along with record-setting rains in May and June of 2011, led to record flooding that caused extensive damage to Minot, North Dakota, and numerous smaller communities in Saskatchewan, Manitoba, and North Dakota. As a result, the International Souris River Board created the Souris River Flood Task Force to evaluate potential reservoir operation changes and flood control measures to manage future floods and droughts. Part of this evaluation involved identifying a need for a stochastic streamflow model to estimate the likelihood of future flooding or drought.

A stochastic natural (unregulated) streamflow simulation model described in a previous report was built upon in this report to include the effects of regulation of four reservoirs (Rafferty, Alameda, and Boundary Reservoirs and Lake Darling) and their operation guidelines. First, a regulated reservoir storage/streamflow routing model was developed and calibrated from when all four reservoirs were in operation until the end of the reconstructed natural streamflow dataset provided by the U.S. Army Corps of Engineers (1992–2011). The regulated reservoir storage/streamflow routing model then was combined with the stochastic natural (unregulated) streamflow model to provide a stochastic regulated streamflow simulation model for the Souris River Basin upstream from Minot, North Dakota.

The stochastic regulated streamflow simulation model was used to estimate regulated flood frequency curves, which are useful for feasibility and design of critical structures such as levees or bridges. Three potential future climatic conditions were considered in this analysis: condition A (wet equilibrium), representing wet (similar to 1970–2017) climatic conditions; condition B (transition), representing transition from wet to dry (similar to 1912–69) climatic conditions; and condition C (dry equilibrium), representing dry climatic conditions. Comparison of the estimated flood frequency curves for regulated flow among the three climatic conditions indicated large differences in flood magnitudes for the more extreme (1-percent or less) annual exceedance probabilities. The estimated 0.2-percent annual exceedance probability flood magnitude for the Souris River upstream from Minot, N. Dak., was 29,300 cubic feet per second for condition A (wet equilibrium), compared to 14,800 cubic feet per second for condition C (dry equilibrium). For comparison, the recorded peak streamflow for 2011 for the Souris River upstream from Minot, N. Dak., was 26,900 cubic feet per second. Although it is not possible to predict how long the current (1970–2017) wet climatic conditions may persist, flood risk for at least the next 25 years, or until about 2040, may be represented best by climatic condition A.

Suggested Citation

Kolars, K.A., Vecchia, A.V., and Galloway, J.M., 2019, Stochastic model for simulating Souris River Basin regulated streamflow upstream from Minot, North Dakota: U.S. Geological Survey Scientific Investigations Report 2018–5155, 24 p., https://doi.org/10.3133/sir20185155.

ISSN: 2328-0328 (online)

Study Area

Table of Contents

  • Acknowledgments
  • Abstract
  • Introduction
  • Stochastic Regulated Streamflow Model
  • Summary
  • References Cited
Publication type Report
Publication Subtype USGS Numbered Series
Title Stochastic model for simulating Souris River Basin regulated streamflow upstream from Minot, North Dakota
Series title Scientific Investigations Report
Series number 2018-5155
DOI 10.3133/sir20185155
Year Published 2019
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Dakota Water Science Center
Description viii, 24 p.
Country United States
State North Dakota
City Minot
Other Geospatial Souris River Basin
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details