Protocol for Monitoring Fish Assemblages in Pacific Northwest National Parks

Techniques and Methods 2-A7

Prepared in cooperation with the North Coast and Cascades Network, National Park Service
and ORCID iD



Rivers and streams that drain from Olympic, Mount Rainier, and North Cascades National Parks are among the most protected corridors in the lower 48 States, and represent some of the largest tracts of contiguous, undisturbed habitat throughout the range of several key fish species of the Pacific Northwest. These watersheds are of high regional importance as freshwater habitat sanctuaries for native fish, where habitat conditions are characterized as having little to no disturbance from development, channelization, impervious surfaces, roads, diversions, or hydroelectric projects. Fishery resources are of high ecological and cultural importance in Pacific Northwest National Parks, and significantly contribute to economically important recreational, commercial, and tribal fisheries. This protocol describes procedures to monitor trends in fish assemblages, fish abundance, and water temperature in eight rivers and five wadeable streams in Olympic National Park during summer months, and is based on 4 years of field testing. Fish assemblages link freshwater, marine, and terrestrial ecosystems. They also serve as focal resources of national parks and are excellent indicators of ecological conditions of rivers and streams. Despite the vital importance of native anadromous and resident fish populations, there is no existing monitoring program for fish assemblages in the North Coast and Cascades Network. Specific monitoring objectives of this protocol are to determine seasonal and annual trends in: (1) fish species composition, (2) timing of migration of adult fish, (3) relative abundance, (4) age and size structure, (5) extent of non-native and hatchery fish, and (6) water temperature. To detect seasonal and annual trends in fish assemblages in reference sites, we rely on repeated and consistent annual sampling at each monitoring site. The general rationale for the repeated sampling of reference sites is to ensure that we account for the high interannual variability in fish movements and abundances in rivers. One underlying assumption is that the monitoring program is designed in perpetuity, and consequently our capability to detect trends substantially increases with time. The protocol describes sampling designs, methods, training procedures, safety considerations, data management, data analysis, and reporting. The allocation of sampling effort represents a balance between ecological considerations, a sound monitoring approach, and practical limitations caused by logistical constraints and a limited annual budget of $55,000. The widespread declines of native fish species in western North America highlights the importance and urgency of understanding trends in fish assemblages from undisturbed habitats. Seasonal and annual trends in fish assemblages will provide insights at the individual, population, and assemblage level. This protocol will allow managers to detect increases and decreases in abundance of priority management species, and occurrence of non-native, hatchery, and federally listed fish. The detection of trends in fish assemblages will allow for specific management actions that may include: implementation of more appropriate fishing regulations, evaluation of existing hatchery releases, control of non-native fish species, and prioritization of habitat restoration projects. Dissemination and communication of scientific findings on North Coast and Cascades Network fish assemblages will be a core product of this protocol, which will have much relevance to decision makers, park visitors, researchers, and educators.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Protocol for Monitoring Fish Assemblages in Pacific Northwest National Parks
Series title:
Techniques and Methods
Series number:
Year Published:
U.S. Geological Survey
Contributing office(s):
Forest and Rangeland Ecosystem Science Center
vi, 131 p.
Larger Work Type:
Larger Work Subtype:
USGS Numbered Series
Larger Work Title:
Chapter 7 of Section A, Biological Science, Book 2, Collection of Environmental Data