Joseph D. Hughes
Edward R. Banta
Richard G. Niswonger
Sorab Panday
Alden M. Provost
Christian D. Langevin
2017
<p>This report documents the Groundwater Flow (GWF) Model for a new version of MODFLOW called MODFLOW 6. The GWF Model for MODFLOW 6 is based on a generalized control-volume ﬁnite-difference approach in which a cell can be hydraulically connected to any number of surrounding cells. Users can deﬁne the model grid using one of three discretization packages, including (1) a structured discretization package for deﬁning regular MODFLOW grids consisting of layers, rows, and columns, (2) a discretization by vertices package for deﬁning layered unstructured grids consisting of layers and cells, and (3) a general unstructured discretization package for deﬁning ﬂexible grids comprised of cells and their connection properties. For layered grids, a new capability is available for removing thin cells and vertically connecting cells overlying and underlying the thin cells. For complex problems involving water-table conditions, an optional Newton-Raphson formulation, based on the formulations in MODFLOW-NWT and MODFLOW-USG, can be activated. Use of the Newton-Raphson formulation will often improve model convergence and allow solutions to be obtained for difﬁcult problems that cannot be solved using the traditional wetting and drying approach. The GWF Model is divided into “packages,” as was done in previous MODFLOW versions. A package is the part of the model that deals with a single aspect of simulation. Packages included with the GWF Model include those related to internal calculations of groundwater ﬂow (discretization, initial conditions, hydraulic conductance, and storage), stress packages (constant heads, wells, recharge, rivers, general head boundaries, drains, and evapotranspiration), and advanced stress packages (streamﬂow routing, lakes, multi-aquifer wells, and unsaturated zone ﬂow). An additional package is also available for moving water available in one package into the individual features of the advanced stress packages. The GWF Model also has packages for obtaining and controlling output from the model. This report includes detailed explanations of physical and mathematical concepts on which the GWF Model and its packages are based.</p><p>Like its predecessors, MODFLOW 6 is based on a highly modular structure; however, this structure has been extended into an object-oriented framework. The framework includes a robust and generalized numerical solution object, which can be used to solve many different types of models. The numerical solution object has several different matrix preconditioning options as well as several methods for solving the linear system of equations. In this new framework, the GWF Model itself is an object as are each of the GWF Model packages. A beneﬁt of the object-oriented structure is that multiple objects of the same type can be used in a single simulation. Thus, a single forward run with MODFLOW 6 may contain multiple GWF Models. GWF Models can be hydraulically connected using GWF-GWF Exchange objects. Connecting GWF models in different ways permits the user to utilize a local grid reﬁnement strategy consisting of parent and child models or to couple adjacent GWF Models. An advantage of the approach implemented in MODFLOW 6 is that multiple models and their exchanges can be incorporated into a single numerical solution object. With this design, models can be tightly coupled at the matrix level.</p>
application/pdf
10.3133/tm6A55
en
U.S. Geological Survey
Documentation for the MODFLOW 6 Groundwater Flow Model
reports