Water-quality trend analysis and sampling design for the Souris River, Saskatchewan, North Dakota, and Manitoba

Water-Resources Investigations Report 2000-4019




The Souris River Basin is a 24,600-square-mile basin located in southeast Saskatchewan, north-central North Dakota, and southwest Manitoba.  The Souris River Bilateral Water Quality Monitoring Group, formed in 1989 by the governments of Canada and the United States, is responsible for documenting trends in water quality in the Souris River and making recommendations for monitoring future water-quality conditions.  This report presents results of a study conducted for the Bilateral Water Quality Monitoring Group by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historic trends in water quality in the Souris River and to determine efficient sampling designs for monitoring future trends.  U.S. Geological Survey and Environment Canada water-quality data collected during 1977-96 from four sites near the boundary crossings between Canada and the United States were included in the trend analysis.

 A parametric time-series model was developed for detecting trends in historic constituent concentration data.  The model can be applied to constituents that have at least 90 percent of observations above detection limits of the analyses, which, for the Souris River, includes most major ions and nutrients and many trace elements.  The model can detect complex nonmonotonic trends in concentration in the presence of complex interannual and seasonal variability in daily discharge.  A key feature of the model is its ability to handle highly irregular sampling intervals.  For example, the intervals between concentration measurements may be be as short as 10 days to as long as several months, and the number of samples in any given year can range from zero to 36.

 Results from the trend analysis for the Souris River indicated numerous trends in constituent concentration.  The most significant trends at the two sites located near the upstream boundary crossing between Saskatchewan and North Dakota consisted of increases in concentrations of most major ions, dissolved boron, and dissolved arsenic during 1987-91 and decreases in concentrations of the same constituents during 1992-96.  Significant trends at the two sites located near the downstream boundary crossing between North Dakota and Manitoba included increases in dissolved sodium, dissolved chloride, and total phosphorus during 1977-86, decreases in dissolved oxygen and dissolved boron and increases in total phosphorus and dissolved iron during 1987-91, and a decrease in total phosphorus during 1992-96.

 The time-series model also was used to determine the sensitivity of various sampling designs for monitoring future water-quality trends in the Souris River.  It was determined that at least two samples per year are required in each of three seasons--March through June, July through October, and November through February--to obtain reasonable sensitivity for detecting trends in each season.  In addition, substantial improvements occurred in sensitivity for detecting trends by adding a third sample for major ions and trace elements in March through June, adding a third sample for nutrients in July through October, and adding a third sample for nutrients, trace elements, and dissolved oxygen in November through February.

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Water-quality trend analysis and sampling design for the Souris River, Saskatchewan, North Dakota, and Manitoba
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
U.S. Geological Survey
Contributing office(s):
North Dakota Water Science Center, Dakota Water Science Center
iv, 77 p.