Development and calibration of a ground-water flow model for the Sparta Aquifer of southeastern Arkansas and north-central Louisiana and simulated response to withdrawals, 1998-2027

Water-Resources Investigations Report 2003-4132

and ORCID iD



The Sparta aquifer, which consists of the Sparta Sand, in southeastern Arkansas and north-central Louisiana is a major water resource and provides water for municipal, industrial, and agricultural uses. In recent years, the demand in some areas has resulted in withdrawals from the Sparta aquifer that substantially exceed replenishment of the aquifer. Considerable drawdown has occurred in the potentiometric surface forming regional cones of depression as water is removed from storage by withdrawals. These cones of depression are centered beneath the Grand Prairie area and the cities of Pine Bluff and El Dorado in Arkansas, and Monroe in Louisiana. The rate of decline for hydraulic heads in the aquifer has been greater than 1 foot per year for more than a decade in much of southern Arkansas and northern Louisiana where hydraulic heads are now below the top of the Sparta Sand. Continued hydraulic-head declines have caused water users and managers alike to question the ability of the aquifer to supply water for the long term. Concern over protecting the Sparta aquifer as a sustainable resource has resulted in a continued, cooperative effort by the Arkansas Soil and Water Conservation Commission, U.S. Army Corps of Engineers, and the U.S. Geological Survey to develop, maintain, and utilize numerical ground-water flow models to manage and further analyze the ground-water system. The work presented in this report describes the development and calibration of a ground-water flow model representing the Sparta aquifer to simulate observed hydraulic heads, documents major differences in the current Sparta model compared to the previous Sparta model calibrated in the mid-1980's, and presents the results of three hypothetical future withdrawal scenarios. The current Sparta model-a regional scale, three-dimensional numerical ground-water flow model-was constructed and calibrated using available hydrogeologic, hydraulic, and water-use data from 1898 to 1997. Significant changes from the previous model include grid rediscretization of the aquifer, extension of the active model area northward beyond the Cane River Formation facies change, and representation of model boundaries. The current model was calibrated with the aid of parameter estimation, a nonlinear regression technique, combined with trial and error parameter adjustment using a total of 795 observations from 316 wells over 4 different years-1970, 1985, 1990, and 1997. The calibration data set provides broad spatial and temporal coverage of aquifer conditions. Analysis of the residual statistics, spatial distribution of residuals, simulated compared to observed hydrographs, and simulated compared to observed potentiometric surfaces were used to analyze the ability of the calibrated model to simulate aquifer conditions within acceptable error. The calibrated model has a root mean square error of 18 feet for all observations, an improvement of more than 12 feet from the previous model. The current Sparta model was used to predict the effects of three hypothetical withdrawal scenarios on hydraulic heads over the period 1998-2027 with one of those extended indefinitely until equilibrium conditions were attained, or steady state. In scenario 1a, withdrawals representing the time period from 1990 to 1997 was held constant for 30 years from 1998 to 2027. Hydraulic heads in the middle of the cone of depression centered on El Dorado decreased by 10 feet from the 1997 simulation to 222 feet below NGVD of 1929 in 2027. Hydraulic heads in the Pine Bluff cone of depression showed a greater decline from 61 feet below NGVD of 1929 to 78 feet below NGVD of 1929 in the center of the cone. With these same withdrawals extended to steady state (scenario 1b), hydraulic heads in the Pine Bluff cone of depression center declined an 2 Development and Calibration of a Ground-Water Flow Model for the Sparta Aquifer of Southeastern Arkansas and North-Central Louisiana and Simulated Response to Withdrawa

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Development and calibration of a ground-water flow model for the Sparta Aquifer of southeastern Arkansas and north-central Louisiana and simulated response to withdrawals, 1998-2027
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
vii, 71 p. : ill., maps (some col.) ; 28 cm. + 1 CD-ROM (4 3/4 in.)