Hydrologic reconnaissance of the geothermal area near Klamath Falls, Oregon

Water-Resources Investigations Report 76-127
By:  and 



Geothermal phenomena observed in the vicinity of Klamath Falls include hot springs with temperatures that approach 204°F (96 o C) (the approximate boiling temperature for the altitude), steam and water wells with temperatures that exceed 212°F (100°C), and hundreds of warm-water wells with temperatures mostly ranging from 68° to 95°F (20° to 35°C). Although warm waters are encountered by wells throughout much of the 350 square miles (900 square kilometers) of the area studied, waters with temperatures exceeding 140°F (60°C) are confined to three relatively restricted areas, the northeast part of the City of Klamath Falls, Olene Gap, and the southwest flank of the Klamath Hills.

The hot waters are located near, and are presumably related to, major fault and fracture zones of the Basin and Range type. The displaced crustal blocks are composed of basaltic flow rocks and pyroclastics of Miocene to Pleistocene age, and of sediments and basalt flows of the Yonna Formation of Pliocene age. Dip-slip movement along the high-angle faults may be as much as 6,000 feet (1,800 meters) at places.

Shallow ground water of local meteoric origin moves through the upper 1,000 to 1,500 feet (300 to 450 meters) of sediments and volcanic rocks at relatively slow rates. A small amount of ground water, perhaps 100,000 acre feet (1.2 x 108 cubic meters) per year, leaves the area in flow toward the southwest, but much of the ground water is discharged as evapotranspiration within the basin. Average annual precipitation on 7,317 square miles (18,951 square kilometers) of land surface near Klamath Falls is estimated to be 18.16 inches (461 millimeters), of which between 12 and 14 inches (305 and 356 millimeters) is estimated to be lost through evapotranspiration.

Within the older basaltic rocks of the area, hydraulic conductivities are greater than in the shallow sediments, and ground water may move relatively freely parallel to the northwest-southeast structural trend. Recharge to the geothermal systems probably occurs as water, in the deeper basalt rocks, penetrating downward along the extensive fracture zones that transect the area.

Shallow meteoric water that is assumed to be the source of the thermal waters has low dissolved-solids concentrations generally dominated by calcium and bicarbonate. During its passage through the geothermal reservoir, the water gains dissolved solids in amounts up to about 900 milligrams per liter. Sodium and sulfate become the dominant ions. Chloride concentrations remain relatively low, and silica concentrations increase from an average of about 35 milligrams per liter to about 100 milligrams per liter.

Both cation ratios and silica concentrations in the hot waters indicate that reservoir temperatures are relatively low. The estimate arrived at in this study for the minimum reservoir temperature is 130°C. Silica concentrations are probably more reliable than cation ratios for estimates of reservoir temperatures for these waters. Other chemical indicators, including oxygen and deuterium isotopes, are consistent in indicating that reservoir temperatures are probably not much greater than the minimum estimate.

Temperature distributions and heat flows in the shallow rocks of the area are strongly influenced by convective flow of water. Most observed temperature gradients and estimated heat flows are believed to be unreliable as indicators of conditions in or directly above the thermal reservoir. Some evidence from temperature profiles suggests, however, that heat flow in the Lower Klamath Lake basin is about 1.4 microcalories per square centimeter per second (1.4 HFU), a value that is near the minimum expected for the Basin and Range province.

The net thermal flux discharged from springs and wells in the area is estimated to be on the order of 2 x 106 calories per second. Discharge by thermal waters into the shallow ground-water system beneath land surface may be many times this amount. Reportedly, at present only about 1,300 calories per second of geothermal heat is being put to beneficial use in the area.

A conceptual model of the geothermal system at Klamath Falls suggests that most of the observed phenomena result from transport of heat in a convective hot-water system closely related to the regional fault system. Temperatures at shallow depths are elevated above normal both by convective transport and by blockage of heat flow in sediments of low thermal conductivities. Circulation of meteoric water to depths of 10,000 to 14,000 feet (3,000 to 4,300 meters) could account for the temperatures that probably exist in the thermal reservoir, assuming temperature gradients of 30° to 40°C per kilometer in a crustal zone of normal conductive heat flow. Circulation to shallower depths may be sufficient to warm the water to the required temperatures assuming the more likely conditions of convective transport of heat and the insulating effect of overlying sediments.

Heat contents in the shallow hot-water system (<3 kilometers depth) are probably in the range 12 x 1018 calories to 36 x 1018 calories. The geothermal resource at Klamath Falls may, therefore, be one of the largest in the United States.

Study Area

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Hydrologic reconnaissance of the geothermal area near Klamath Falls, Oregon
Series title Water-Resources Investigations Report
Series number 76-127
DOI 10.3133/wri76127
Year Published 1976
Language English
Publisher U.S. Geological Survey
Publisher location Menlo Park, CA
Contributing office(s) Oregon Water Science Center
Description x, 129 p.
Country United States
State Oregon
Other Geospatial Klamath Falls
Google Analytic Metrics Metrics page