thumbnail

Effects of runoff controls on the quantity and quality of urban runoff at two locations in Austin, Texas

Water-Resources Investigations Report 87-4004

By:
and

Links

Abstract

Rapid urban development in the Austin metropolitan area, Texas, is causing concern about increasing peak discharges from storm runoff and the degradation of the quality of water in receiving streams, lakes, and aquifers. In an attempt to decrease peak discharges and improve water quality, runoff controls are being required in some watersheds. This report summarizes the precipitation, streamflow, and water-quality data collected from September 1982 to September 1984 upstream and downstream from runoff controls at two locations, and presents the effects of these runoff controls on streamflow and the quality of runoff water. The two controls are a detention and filtering pond near Barton Creek Square Shopping Center, a large shopping center southwest of downtown Austin, and a grass-swale control in the Al ta Vista Planned Unit Development, a multipie-family housing area.

At Barton Creek Square Shopping Center, rainfall for the storms analyzed ranged from 0.14 to 2.88 inches. The rainfall rate for the September 7, 1983, storm exceeded the 100-year return period for the 5- and 10-minute duration and was equal to the 50-year return period for the 15-minute duration. Peak discharge at the inflow station to the detention pond was closely related to the maximum rainfall during a 5-minute period and occurred about 10 minutes later. The maximum inflow at this station was 185 cubic feet per second and appeared to be the limit of the storm sewer system. For small- and moderate-sized storms, the runoff is contained in the detention pond and passes through a filter system. Runoff from large storms overflows into the drop outlet. For storms contained in the pond, peak discharges at the outflow station generally were less than 3.1 cubic feet per second. As time passed, the outflow peak discharges tended to decrease as a result of reduced permeability of the filter. Cleaning the filter appeared to increase the peak flows but did not restore them to the previous level. The runoff-rainfall ratio averaged 0.85 at the inflow station and 0.36 at the outflow station. A water budget shows unexplained losses to average 20 percent.

At the Barton Creek Square Shopping Center, discharge-weighted densities of fecal-col iform and fecal-streptococci bacteria and discharge-weighted concentrations of biochemical oxygen demand, chemical oxygen demand, total organic carbon, suspended solids, total ammonia plus organic nitrogen, and total phosphorus generally were larger in the inflow than in the outflow. Discharge-weighted concentrations of dissolved lead, dissolved iron, and dissolved zinc generally were small in both the inflow and outflow; however, the larger discharge-weighted concentrations of these constituents generally were found in the inflow. Discharge-weighted concentrations of volatile dissolved solids were smaller in the inflow than in the outflow for 10 of the 22 storms analyzed. Discharge-weighted concentrations of total nitrite plus nitrate nitrogen and dissolved solids generally were much smaller in the inflow than in the outflow. It is likely that organic and ammonia nitrogen trapped in the pond from previous storms and in the inflow water as it flows through the pond is being oxidized to nitrite and nitrate nitrogen. Similarly, dissolved solids retained in the filter or on the bed of the pond from previous storms are being leached to the outflow.

Measured peak concentrations or densities of most constituents in the inflow were significantly larger than those in the outflow for most constituents. An exception was noted for concentrations of total nitrite plus nitrate which were larger in the outflow than the inflow as indicated by discrete sample analysis for six storms.

Loads of most constituents and total numbers of bacteria were significantly larger in the inflow than in the outflow. The total numbers of bacteria were reduced by approximately 80 percent. Average removal efficiencies for suspended solids, biochemical oxygen demand, total phosphorus, total organic carbon, chemical oxygen demand, and dissolved zinc ranged between 60 and 80 percent. The average loads of dissolved solids were approximately 13 percent larger in the outflow than the inflow. Average loads of total nitrite plus nitrate nitrogen were approximately 110 percent larger in the outflow than in the inflow. The increase in loads of these constituents is due to material being leached from the bed of the pond or from the filter system.

At Al ta Vista, rainfall for the storms analyzed ranged from 0.25 to 2.00 inches. The maximum rainfall intensity was 0.30 inch for a 5-minute interval. The runoff-rainfall ratio averaged 0.42 and appeared to be evenly distributed about the mean ratio line. The peak discharge at the inflow station to the grass-covered swale area was 0.93 cubic foot per second. Inaccuracies of discharge at the outflow station and variations in the ungaged drainage area with the size of the storm prevented a hydrologic analysis of the basin above this station.

Discharge-weighted concentrations of total phosphorus were larger in the outflow than in the inflow for each of the 19 storms analyzed. Discharge-weighted concentrations of dissolved solids, volatile dissolved solids, biochemical oxygen demand, chemical oxygen demand, and total organic carbon were larger in the outflow than in the inflow for at least 12 of the 19 storms analyzed. Discharge-weighted densities of fecal streptococci were decreased between the inflow and outflow, with discharge-weighted densities of fecal streptococci being less in the outflow for 15 of the 19 storms analyzed. Because of the relatively small variations in concentrations and densities of constituents between the inflow and outflow sites, and because of the errors in discharge at the outflow gage, it is not feasible to determine the effect of the grass-covered swales on discharge-weighted concentrations and densities of water-quality constituents.

Discrete concentrations or densities of most constituents were not decreased. Peak concentrations of dissolved solids in the outflow exceeded peak concentrations in the inflow for all five of the storms analyzed with discrete samples. Peak concentrations of suspended solids, total ammonia plus organic nitrogen, total nitrite plus nitrate nitrogen, total nitrogen, and dissolved iron were larger in the outflow than in the inflow for four of the five storms analyzed. Load-removal efficiencies of water-quality constituents could not be determined because of inaccuracies in measuring discharge at the outflow site,

 

Study Area

Additional publication details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Effects of runoff controls on the quantity and quality of urban runoff at two locations in Austin, Texas
Series title:
Water-Resources Investigations Report
Series number:
87-4004
Year Published:
1987
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Austin, TX
Contributing office(s):
Texas Water Science Center
Description:
ix, 101 p.
Country:
United States
State:
Texas
City:
Austin
Online Only (Y/N):
N
Additional Online Files (Y/N):
N