User's guide to revised method-of-characteristics solute-transport model (MOC--version 31)

Water-Resources Investigations Report 94-4115
By: , and 



The U.S. Geological Survey computer model to simulate two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978; Goode and Konikow, 1989) has been modified to improve management of input and output data and to provide progressive run-time information. All opening and closing of files are now done automatically by the program. Names of input data files are entered either interactively or using a batch-mode script file. Names of output files, created automatically by the program, are based on the name of the input file. In the interactive mode, messages are written to the screen during execution to allow the user to monitor the status and progress of the simulation and to anticipate total running time. Information reported and updated during a simulation include the current pumping period and time step, number of particle moves, and percentage completion of the current time step. The batch mode enables a user to run a series of simulations consecutively, without additional control. A report of the model's activity in the batch mode is written to a separate output file, allowing later review. The user has several options for creating separate output files for different types of data. The formats are compatible with many commercially available applications, which facilitates graphical postprocessing of model results. Geohydrology and Evaluation of Stream-Aquifer Relations in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern Alabama, Northwestern Florida, and Southwestern Georgia By Lynn J. Torak, Gary S. Davis, George A. Strain, and Jennifer G. Herndon Abstract The lower Apalachieola-Chattahoochec-Flint River Basin is underlain by Coastal Plain sediments of pre-Cretaceous to Quaternary age consisting of alternating units of sand, clay, sandstone, dolomite, and limestone that gradually thicken and dip gently to the southeast. The stream-aquifer system consism of carbonate (limestone and dolomite) and elastic sediments, which define the Upper Floridan aquifer and Intermediate system, in hydraulic connection with the principal rivers of the basin and other surface-water features, natural and man made. Separate digital models of the Upper Flori-dan aquifer and Intermediate system were constructed by using the U.S. Geological Survey's MODular Finite-Element model of two dimensional ground-water flow, based on concep- tualizations of the stream-aquifer system, and calibrated to drought conditions of October 1986. Sensitivity analyses performed on the models indicated that aquifer hydraulic conductivity, lateral and vertical boundary flows, and pumpage have a strong influence on groundwater levels. Simulated pumpage increases in the Upper Floridan aquifer, primarily in the Dougherty Plain physiographic district of Georgia,. caused significant reductions in aquifer discharge to streams that eventually flow to Lake Seminole and the Apalachicola River and Bay. Simulated pumpage increases greater than 3 times the October 1986 rates caused drying ofsome stream reaches and parts of the Upper Floridan aquifer in Georgia. Water budgets prepared from simulation results indicate that ground- water discharge to streams and recharge by horizontal and vertical flow are the principal mechanisms for moving water through the flow system. The potential for changes in ground-water quality is high in areas where chemical constituents can be mobilized by these mechanisms. Less than 2 percent of ground-water discharge to streams comes from the Intermediate system; thus, it plays a minor role in the hydrodynamics of the stream- aquifer system.

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title User's guide to revised method-of-characteristics solute-transport model (MOC--version 31)
Series title Water-Resources Investigations Report
Series number 94-4115
DOI 10.3133/wri944115
Edition -
Year Published 1994
Language ENGLISH
Publisher U.S. Geological Survey ; USGS Earth Science Information Center, Books and Open-File Reports Section [distributor],
Description iv, 63 p. ;28 cm.