Water-quality assessment of the Kentucky River Basin, Kentucky; distribution of metals and other trace elements in sediment and water, 1987-90

Water-Resources Investigations Report 94-4134
By: , and 

Links

Abstract

The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is designed to provide a nationally consistent description of the current status of water quality, to define water-quality trends, and to relate past and present water-quality conditions to natural features, uses of land and water, and other water-quality effects from human activities. The Kentucky River Basin is one of four NAWQA pilot projects that focused primarily on the quality of surface water. Water, sediment, and bedrock samples were collected in the Kentucky River Basin during 1987-90 for the purpose of (1) describing the spatial distribution, transport, and temporal variability of metals and other trace elements in streams of the basin; (2) estimating mean annual loads, yields, and trends of constituent concentrations and identifying potential causes (or sources) of spatial patterns; (3) providing baseline information for concentrations of metals in streambed and suspended sediments; (4) identifying stream reaches in the Kentucky River Basin with chronic water-quality problems; and (5) evaluating the merits of the NAWQA pilot study-approach for the assessment of metals and other trace elements in a river system.

The spatial distribution of metals and other trace elements in streambed sediments of the Kentucky River Basin is associated with regional differences of geology, land use and cover, and the results of human activities. Median concentrations of constituents differed significantly among physiographic regions of the basin because of relations to bedrock geochemistry and land disturbance. Concentrations of potentially toxic metals were large in urban and industrial areas of the basin. Elevated concentrations of certain metals were also found in streambed sediments of the Knobs Region because of the presence of Devonian shale bedrock. Elevated concentrations of lead and zinc found in streambed sediments of the Bluegrass Region are likely associated with urban stormwater runoff, point-source discharges, and waste-management practices. Concentrations of cadmium, chromium, copper, mercury, and silver were elevated in streambed sediments downstream from wastewater-treatment plant discharges. Streambed-sediment concentrations of barium, chromium, and lithium were elevated in streams that receive brine discharges from oil production. Elevated concentrations of antimony, arsenic, molybdenum, selenium, strontium, uranium, and vanadium in streambed sediments of the Kentucky River Basin were generally associated with natural sources.

Concentrations of metals and other trace elements in water samples from fixed stations (stations where water-quality samples were collected for 3.5 years) in the Kentucky River Basin were generally related to stream discharge and the concentration of suspended sediment, whereas constituent concentrations in the suspended-sediment matrix were indicative of natural and human sources. Estimated mean annual loads and yields for most metals and other trace elements were associated with the transport of suspended sediment. Land disturbance, such as surface mining and agriculture, contribute to increased transport of sediment in streams, thereby increasing concentrations of metals in water samples during periods of intense or prolonged rainfall and increased stream discharge. Concentrations of many metals and trace elements were reduced during low streamflow. Although total-recoverable and dissolved concentrations of certain metals and trace elements were large in streams affected by land disturbance, concentrations of constituents in the suspendedsediment matrix were commonly large in streams in the Knobs and Eastern Coal Field Regions (because of relations with bedrock geochemistry) and in streams that receive wastewater or oil-well-brine discharges. Concentrations and mean annual load estimates for aluminum, chromium, copper, iron, lead, manganese, and mercury were larger than those obtained from data collected by a State agency, probably because of differences in sample-collection methodology, the range of discharge associated with water-quality samples, and laboratory analytical procedures. However, concentrations, loads, and yields of arsenic, barium, and zinc were similar to those determined from the State data.

Significant upward trends in the concentrations of aluminum, iron, magnesium, manganese, and zinc were indicated at one or more fixed stations in the Kentucky River Basin during the past 10 to 15 years. Upward trends for concentrations of aluminum, iron, and manganese were found at sites that receive drainage from coal mines in the upper Kentucky River Basin, whereas upward trends for zinc may be associated with urban sources. Water-quality criteria established by the U.S. Environmental Protection Agency (USEPA) or the State of Kentucky for concentrations of aluminum, beryllium, cadmium, chromium, copper, iron, manganese, nickel, silver, and zinc were exceeded at one or more fixed stations in the Kentucky River Basin. On a qualitative basis, dissolved concentrations of certain metals and trace elements were large during low streamflow at sites where (1) concentrations of these constituents in underlying streambed sediments were large, or (2) dissolvedoxygen concentrations were small. Concentrations of barium, lithium, and strontium were large during low streamflow, which indicates the influence of ground-water baseflows on the quality of surface water during low flow.

The effects of point-source discharges, landfills, and other wastemanagement practices are somewhat localized in the Kentucky River Basin and are best indicated by the spatial distribution of metals and other trace elements in streambed sediments and in the suspended-sediment fraction of water samples at stream locations near the source. It was not possible to quantify the contribution of point sources to the total transport of metals and other trace elements at fixed stations because data were not available for wastewater effluents. Quantification of baseline concentrations of metals and other trace elements in streambed sediments provides a basis for the detection of water-quality changes that may result from improvements in wastewater treatment or the implementation of best-management practices for controlling contamination from nonpoint sources in the Kentucky River Basin.

Study Area

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Water-quality assessment of the Kentucky River Basin, Kentucky; distribution of metals and other trace elements in sediment and water, 1987-90
Series title Water-Resources Investigations Report
Series number 94-4134
DOI 10.3133/wri944134
Year Published 1995
Language English
Publisher U.S. Geological Survey
Description Report: xi, 184 p.; 1 Plate: 24.13 x 26.62 inches
Country United States
State Kentucky
Other Geospatial Kentucky River Basin
Scale 500000
Google Analytic Metrics Metrics page