Simulation of water available for runoff in clearcut forest openings during rain-on-snow events in the western Cascade Range of Oregon and Washington

Water-Resources Investigations Report 95-4219
By: , and 

Links

Abstract

Rain-on-snow events are common on mountain slopes within the transient-snow zone of the Pacific Northwest. These events make more water available for runoff than does precipitation alone by melting the snowpack and by adding a small amount of condensate to the snowpack. In forest openings (such as those resulting from clearcut logging), the amount of snow that accumulates and the turbulent- energy input to the snowpack are greater than below forest stands. Both factors are believed to contribute to a greater amount of water available for runoff during rain-on-snow events in forest openings than forest stands. Because increased water available for runoff may lead to increased downstream flooding and erosion, knowledge of the amount of snowmelt that can occur during rain on snow and the processes that control snowmelt in forest openings is useful when making land-use decisions. Snow accumulation and melt were simulated for clearcut conditions only, using an enery- balance approach that accounts for the most important energy and mass exchanges between a snowpack and its environment. Meteorological measurements provided the input for the simulations. Snow accumulation and melt were not simulated in forest stands because interception of precipitation processes are too complex to simulate with a numerical model without making simplifying assumptions. Such a model, however, would need to be extensively tested against representative observations, which were not available for this study. Snowmelt simulated during three rain-on-snow events (measured in a previous study in a clearcut in the transient-snow zone of the H.J. Andrews Experimental Forest in Oregon) demonstrated that melt generation is most sensitive to turbulent- energy exchanges between the air and the snowpack surface. As a result, the most important climate variable that controls snowmelt is wind speed. Air temperature, however, is a significant variable also. The wind speeds were light, with a maximum of 3.3 meters per second during one event and average wind speeds for all three events ranging from 1.7 to 2.1 meters per second. For observed and estimated conditions, the average simulated snowmelt ranged from 0.2 to 0.8 millimeter liquid water per hour, and turbulent-energy exchange provided 51 percent of the energy that led to snowmelt during the largest of the three rain-on-snow events. When wind speeds were multiplied by a factor of 4, the simulated snowmelt ranged from 1.0 to 2.5 millimeters per hour. Similarly, when wind speeds were multiplied by a factor of 6, the simulated snowmelt ranged from 1.6 to 3.7 millimeters per hour. Turbulent-energy exchange provided a dominant 88 and 92 percent of the energy input to the snowpack during the largest rain-on-snow event when average wind speeds were multiplied by factors of 4 and 6, respectively. During the same event, the contribution to melt by the sum of net solar and net thermal radiation (net all-wave radiation) was roughly equal to the contribution of sensible energy carried by the precipitation itself (advective heat). Estimates of snowmelt resulting from rain on snow for climate conditions other than those observed and estimated in the simulated plot-scale data were expanded by simulating snowmelt for 24-hour presumed rain-on-snow events extracted from the reconstructed, long-term historical climate records for Cedar Lake and Snoqualmie Pass National Weather Service stations in Washington State. The selected events exceeded 75 millimeters of precipitation in 24 hours. When clearcut conditions were assumed to be identical to those at the H.J. Andrews Experimental Forest site and a ripe snowpack that never completely melted was assumed to be available, simulated 24-hour snowmelt ranged from 4.2 to 47.0 millimeters (0.2 to 2.0 millimeters per hour) for low wind speeds (1.5 meters per second) and from 10.3 to 178.8 millimeters (0.4 to 7.5 millimeters per hour) for high wind speeds (8.2 meters per second). The ranges in
Publication type Report
Publication Subtype USGS Numbered Series
Title Simulation of water available for runoff in clearcut forest openings during rain-on-snow events in the western Cascade Range of Oregon and Washington
Series title Water-Resources Investigations Report
Series number 95-4219
DOI 10.3133/wri954219
Edition -
Year Published 1996
Language ENGLISH
Publisher U.S. Geological Survey ; Earth Science Information Center, Open-File Reports Section [distributor],
Description vii, 67 p. :ill., maps ;28 cm.
Google Analytic Metrics Metrics page
Additional publication details