Water-quality trends for streams and reservoirs in the Research Triangle area of North Carolina, 1983-95

Water-Resources Investigations Report 97-4061




Water-quality and streamflow monitoring data, collected from 1983 to 1995, were analyzed for 34 stream and reservoir sites in a seven- county region within the upper Neuse and upper Cape Fear River Basins. Early data (1983-88) were compiled from U.S. Geological Survey water- quality studies and from the ambient water-quality monitoring network of the North Carolina Department of Environment, Health, and Natural Resources. Analyses of major ions, nutrients, metals, trace elements, and synthetic organic compounds were compiled from samples collected by the U.S. Geological Survey from 1988 to 1995 as part of a continuing project to monitor the water quality of surface-water supplies in the Research Triangle area of North Carolina, and from the North Carolina Department of Environment, Health, and Natural Resources ambient water-quality monitoring network. This report presents the results of analysis of consistently increasing or decreasing trends in concentrations of nitrogen and phosphorus species, suspended sediment, suspended solids, sodium, chloride, iron, manganese, zinc, and chlorophyll a from seasonal Kendall trend analysis on flow-adjusted concentrations for streams and concentrations in lakes. Total phosphorus concentrations also were tested for a step decrease in concentration (step trend) associated with the North Carolina phosphate-detergent ban of 1988. For some other constituents, insufficient data or values below laboratory detection limits precluded trend analysis. A regionwide decrease in total phosphorus, ranging from 25 to 81 percent was observed that coincided with increased phosphorus removal efforts at municipal wastewater-treatment facilities in the region and the statewide phosphate-detergent ban. Most sites had stable or decreasing trends in nitrogen concentrations; however, increasing trends occurred in the Neuse River near Clayton and at Smithfield, both of which are downstream from the developing Raleigh-Durham area. Chlorophyll a concentrations have increased by 17 to 52 percent per year at monitored reservoirs, except at Cane Creek Reservoir and Lake Michie where there was no trend. No significant trends in suspended- sediment concentrations were observed. Long-term sodium concentrations were available for only a few sites. Of these, decreasing concentrations were observed in the Neuse River at Smithfield and Cane Creek near Orange Grove, and an increasing concentration was observed in University Lake. At most sites, concentrations of manganese, iron, and zinc were stable. Decreasing iron trends were observed in Little River and Cane Creek Reservoirs and Lake Michie. Cane Creek Reservoir also had a decreasing manganese trend. Severn sites, all downstream from wastewater-treatment facilities, were analyzed for zinc trends. A decreasing trend was observed in two of these--Knap of Reeds Creek and Little Lick Creek.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Water-quality trends for streams and reservoirs in the Research Triangle area of North Carolina, 1983-95
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
U.S. Geological Survey ; Branch of Information Services [distributor],
Contributing office(s):
South Atlantic Water Science Center
18 p. :ill. (some col.), col. maps ;28 cm.
United States
North Carolina
Other Geospatial:
Upper Cape Fear River Basin, Upper Neuse River Basin