Availability of streamflow for recharge of the basal aquifer in the Pearl Harbor area, Hawaii

Water Supply Paper 1999-B
By:

Links

Abstract

The Pearl Harbor area is underlain by an extensive basal aquifer that contains large supplies of fresh water. Because of the presence of a cap rock composed of sedimentary material that is less permeable than the basaltic lava of the basal aquifer, seaward movement of ground water is retarded. The cap rock causes the basal water to stand at a high level; thus, the lens of fresh water that floats on sea water is thick. Discharge from the basal ground-water body, which includes pumpage from wells and shafts, averaged 250 million gallons per day during 1931-65. Because the water level in the basal aquifer did not decline progressively, recharge to the ground-water body must have been approximately equal to discharge. Although pumping for agricultural use has decreased since 1931, net ground-water discharge has increased because of a large increase in pumping for urban use. Substitution of ground water for surface water in the irrigation of sugarcane has also contributed to a net increase in ground-water discharge. The development of Mililani Town will further increase discharge. The increase in ground-water discharge may cause an increase in chloride content of the water pumped from wells near the shore of Pearl Harbor unless the increased discharge is balanced by increased recharge to the local aquifer. The aquifer is recharged by direct infiltration and deep percolation of rain, principally in the high forested area, by infiltration and percolation of irrigation water applied in excess of plant requirements, by seepage of water through streambeds, and possibly by ground-water inflow from outside the area. Recharge is greatest in the uplands, where rainfall is heavy and where much infiltration takes place before rainwater collects in the middle and lower reaches of stream channels. Once water collects in and saturates the alluvium of stream channels, additional inflow to the streams will flow out to sea, only slightly decreased by seepage. Average annual direct runoff from the 90-square-mile Pearl Harbor area is 47.27 million gallons per day, or 11.1 inches; this is 13.3 percent of the average annual rainfall (83.3 in.) over the area. Average annual direct runoff in streams at the 800- and 400-foot altitudes is 29 and 38 million gallons per day, respectively. Kipapa Stream has the largest average annual direct runoff at those altitudes--6 and 9 million gallons per day, respectively. Because streams are flashy and have a wide range in discharge, only 60 percent of the average annual runoff can be economically diverted through ditches to recharge areas. The diversion may be increased slightly if reservoirs are used in conjunction with ditches to temporarily detain flows in excess of ditch capacity. The planned irrigation use of some of the perennial flow available in Waikele Stream near sea level will decrease pumping from and increase recharge to the basal aquifer. Suspended-sediment load is mainly silt and clay, and it increases rapidly with increased discharge. Thus, the use of streamflow for artificial recharge poses problems. High flows must be used if recharge is to be effective, but flows must not be so high as to cause clogging of recharge facilities with sediment or woodland debris. Practical tests are needed to determine the advantages and disadvantages of different types of recharge structures, such as a reservoir or basin, large-diameter deep shafts, deep wells, or combinations of all these structures.
Publication type Report
Publication Subtype USGS Numbered Series
Title Availability of streamflow for recharge of the basal aquifer in the Pearl Harbor area, Hawaii
Series title Water Supply Paper
Series number 1999
Chapter B
DOI 10.3133/wsp1999B
Edition -
Year Published 1971
Language ENGLISH
Publisher U.S. Govt. Print. Off.,
Description iv, 26 p. :illus., maps. ;23 cm.
Google Analytic Metrics Metrics page
Additional publication details