Evaluation of major dike-impounded ground-water reservoirs, Island of Oahu

Water Supply Paper 2217
By:  and 

Links

Abstract

Ground-water reservoirs impounded by volcanic dikes receive a substantial part of the total recharge to ground water on the island of Oahu because they generally underlie the rainiest areas. These reservoirs accumulate the infiltration from rainfall, store it temporarily, and steadily leak it to abutting basal reservoirs or to streams cutting into them. The dike reservoirs have high hydraulic heads and are mostly isolated from saline water. The most important and productive of the dike-impounded reservoirs are in an area of about 135 square miles in the main fissure zone of the Koolau volcano where the top of the dike-impounded water reaches an altitude of at least 1,000 feet. Water is impounded and stored both above and below sea level. The water stored above sea level in the 135 square mile area has been roughly estimated at 560 billion gallons. In comparison, the water stored above sea level in reservoirs underlying a dike-intruded area of about 53 square miles in the Waianae Range has been roughly estimated at 100 billion gallons. Storage below sea level is indeterminable, owing to uncertainties about the ability of the rock to store water as dike density increases and porosity decreases. Tunnels, by breaching dike controls, have reduced the water stored above sea level by at least 50 billion gallons in the Koolau Range and by 5 1/2 billion gallons in the Waianae Range, only a small part of the total water stored. Total leakage from storage in the Koolau Range has been estimated at about 280 Mgal/d (million gallons per day). This estimated leakage from the dike-impounded reservoirs makes up a significant part of the ground-water yield of the Koolau Range, which has been estimated to range from 450 to 580 Mgal/d. The largest unused surface leakage is in the Kaneohe, Kahana, and Punaluu areas, and the largest unused underflow occurs in the Waialee, Hauula-Laie, Punaluu, and Kahana areas. The unused underflow leakage is small in areas near and east of Waialae, but it is an important supply because of the great need for augmenting water supplies there. Total leakage from storage in the Waianae Range has not been estimated because underflow is difficult to determine. Much of the surface leakage, about 4 Mgal/d in the upper parts of Waianae, Makaha, and Lualualei Valleys, has been diverted by tunnels. Hence, supplies available, other than surface leakage, cannot be estimated from the discharge end of the hydrologic cycle. Infiltration in the Waianae Range to dike-intruded reservoirs in the upper part of the valleys on the west (leeward) side has been estimated at about 20 Mgal/d, and on the east (windward) side, at about 10 Mgal/d. The available supply has been estimated at about 15 Mgal/d from the infiltration on the leeward side, of which about 4 Mgal/d is now being developed. No estimate has been made for the available supply on the windward side. Dike-intruded reservoirs at shallow depths west (lee side) of the crest are in upper Makaha, Waianae, and Lualualei Valleys. They are at moderate depths in upper Haleanu and in lower Kaukonahua Gulches on the east (windward) side. Flow hydraulics in dike tunnels is also discussed.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Evaluation of major dike-impounded ground-water reservoirs, Island of Oahu
Series title Water Supply Paper
Series number 2217
DOI 10.3133/wsp2217
Year Published 1985
Language English
Publisher U.S. Geological Survey
Contributing office(s) Pacific Islands Water Science Center
Description vi, 77 p.
Country United States
State Hawaii
Other Geospatial Oahu
Google Analytic Metrics Metrics page
Additional publication details