Relation between ground-water quality and mineralogy in the coal- producing Norton Formation of Buchanan County, Virginia

Water Supply Paper 2274




The geochemical processes controlling ground-water chemistry in the coal-producing strata of southwestern Virginia include hydrolysis of silicates, dissolution of carbonates, oxidation of pyrite, cation exchange, and precipitation of secondary minerals, kaolinite and goethite. Core material from the Norton Formation of the Pennsylvania Period is composed of slightly more than one-half sandstone; siltstone and minor amounts of shale, clay, and coal account for the majority of the remainder. Petrographic analyses and x-ray diffraction studies indicate that the sandstone is about 75 percent quartz, 15 percent plagioclase feldspar, 2 percent potassium feldspar, 2 percent muscovite, 4 percent chlorite, and 1 percent siderite. Calcite is present in small amounts and in a few strata as clasts or cement. No limestone strata were identified. The siltstone is about 50 percent quartz, 10 percent plagioclase feldspar, 10 percent mica, 20 percent chlorite, and from 0 to 25 percent siderite. Pyrite is associated with some siltstone and, where present, generally accounts for less than 1 percent. Total sulfur generally constitutes less than 0.1 percent of core samples but about 4 percent in the more pyrite-rich layers. Three reaction models are used to account for the observed water chemistry. The models derive sulfate from pyrite, iron from pyrite and siderite, calcium from plagioclase and calcite, sodium from plagioclase and cation exchange, magnesium from chlorite, and carbon from carbon dioxide, calcite, and siderite. Kaolinite, chalcedony, and goethite are formed authigenically. Carbon-13 data define the relative contributions of carbon sources to models. Comparison of adjacent unmined and mined basins indicates that surface mining significantly increases the weathering reaction of pyrite in contrast to weathering reactions of other minerals. However, in the area studied, reactive pyrite does not appear to be present in sufficient quantities in strata associated with mined coal seams to cause acid mine drainage.

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Relation between ground-water quality and mineralogy in the coal- producing Norton Formation of Buchanan County, Virginia
Series title:
Water Supply Paper
Series number:
Year Published:
U.S. G.P.O.,
iv, 30 p. :ill., maps ;28 cm.