Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina

Water Supply Paper 2345
By:  and 

Links

Abstract

Four unsaturated-zone monitoring sites and a meteorologic station were installed at the low-level radioactive-waste burial site near Barnwell, S.C., to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to more than 1 meter of surface sand, underlain by up to 15 meters of clayey sand. Two monitoring sites were installed in experimental trenches, and two were installed in radioactive-waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Hydrologic properties of unsaturated-zone materials were also determined. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in winter and spring. Saturations in the backfill sand varied from 20 to 100 percent, and in the adjacent undisturbed and overlying compacted clayey sand, from about 75 to 100 percent. The same pattern generally was observed at all four monitoring sites. The tracer-test data indicate that water movement occurred mainly during the recharge period, winter and spring. The tracer-test results enabled computation of rates of unsaturated flow in the compacted clayey-sand cap, the compacted clayey-sand barrier, and the backfill sand. A micro-scale hydrologic budget was determined for an undisturbed part of the site from July 1983 through June 1984.Total precipitation was 144 centimeters, and actual evapotranspiration was 101 centimeters. Additionally, because tensiometer data indicate negligible water-storage changes in the unsaturated zone, it is estimated that approximately 43 centimeters of recharge reached the water table. During 1984, the rise and fall of ponded water in an experimental trench was continuously monitored with a digital recorder. This water-level record was used to compute the rate of leakage of ponded water from that trench--1 x 10 -5 centimeter per second. A cross-sectional finite-element model of variably saturated flow was used to test the conceptual model of water movement in the unsaturated zone and to illustrate the effect of trench design on water movement into the experimental trenches. Monitoring and model results show that precipitation on trenches infiltrated the trench cap and moved vertically into the trench backfill material. Precipitation on the undisturbed material adjacent to the trenches moved vertically through the surface sand and continued either downward into undisturbed clayey sand or laterally along the sand/clayey-sand interface into the backfill sand, depending on trench design. The trench construction practice of placing a compacted clayey-sand barrier around the trench greatly inhibits soil water from entering the trench.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina
Series title Water Supply Paper
Series number 2345
DOI 10.3133/wsp2345
Year Published 1989
Language English
Publisher U.S. Government Printing Office
Contributing office(s) South Atlantic Water Science Center
Description v, 40 p.
Country United States
State South Carolina
City Barnwell
Google Analytic Metrics Metrics page
Additional publication details