Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California

Water Supply Paper 2370-H
By:

Links

Abstract

The Owens Valley, a long, narrow valley along the east side of the Sierra Nevada in eastcentral California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River?Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river? aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local residents have expressed concerns that the increased pumping may have a detrimental effect on the environment and the native vegetation (indigenous alkaline scrub and meadow plant communities) in the valley. Native vegetation on the valley floor depends on soil moisture derived from precipitation and from the unconfined part of a multilayered ground-water system. This report, which describes the evaluation of the hydrologic system and selected water-management alternatives, is one in a series designed to identify the effects that ground-water pumping has on native vegetation and evaluate alternative strategies to mitigate any adverse effects caused by pumping. The hydrologic system of the Owens Valley can be conceptualized as having three parts: (1) an unsaturated zone affected by precipitation and evapotranspiration; (2) a surface-water system composed of the Owens River, the Los Angeles Aqueduct, tributary streams, canals, ditches, and ponds; and (3) a saturated ground-water system contained in the valley fill. Analysis of the hydrologic system was aided by development of a ground-water flow model of the ?aquifer system,? which is defined as the most active part of the ground-water system and which includes nearly all of the Owens Valley except for the area surrounding the Owens Lake. The model was calibrated and verified for water years 1963?88 and used to evaluate general concepts of the hydrologic system and the effects of past water-management practices. The model also was used to evaluate the likely effects of selected water-management alternatives designed to lessen the adverse effects of ground-water pumping on native vegetation. Results of the model simulations confirm that a major change in the hydrologic system was caused by the additional export of water from the valley beginning in 1970. Average ground-water pumpage increased by a factor of five, discharge from springs decreased almost to zero, reaches of the Owens River that previously had gained water from the aquifer system began losing water, and total evapotranspiration by native plants decreased by about 35 percent. Water-management practices as of 1988 were defined and evaluted using the model. Simulation results indicate that increased ground-water pumpage since 1985 for enhancement and mitigation projects within the Owens Valley has further stressed the aquifer system and resulted in declines of the water table and reduced evapotranspiration. Most of the water-table declines are beneath the western alluvial fans and in the immediate vicinity of production wells. The water-table altitude beneath the valley floor has remained relatively constant over time because of hydrologic buffers, such as evapotranspiration, springs, and permanent surface-water features. These buffers adjust the quantity of water exchanged with the aquifer system and effectively minimize variations in water-table altitude. The widespread presence of hydrologic buffers is the primary reason the water-table altitude beneath the valley floor has remained relatively constant since 1970 despite major changes in the type and location of ground-water discharge. Evaluation of selected water-management alternatives indicates that long-term variations in average runoff to the Owens Valley of as much as
Publication type Report
Publication Subtype USGS Numbered Series
Title Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California
Series title Water Supply Paper
Series number 2370
Chapter H
DOI 10.3133/wsp2370H
Edition -
Year Published 1998
Language ENGLISH
Description 175 p., 6 plates in pocket
Google Analytic Metrics Metrics page
Additional publication details