Post-wildfire debris flows

By: , and 

Links

Abstract

Post-wildfire debris flows pose severe hazards to communities and infrastructure near and within recently burned mountainous terrain. Intense heat of wildfires changes the runoff characteristics of a watershed by combusting the vegetative canopy, litter, and duff, introducing ash into the soil and creating water repellant soils. Following wildfire, rainfall on bare ground is less able to infiltrate into the fire-altered soils and overland flow is less impeded by vegetation. Rainfall runoff in recently burned areas can erode hillslopes owing to the removal of soil binding organic matter near the soil surface by fire. In channels, loose, dry-ravel deposits composed of sand and gravel are readily entrained by concentrated runoff in channels. Entrainment of soil on hillslopes and in channels bulks up the sediment concentration of the rainfall runoff to generate debris flows capable of transporting boulders and large woody debris. Post-wildfire debris flows can be triggered by rainfall conditions that would typically produce little runoff during unburned conditions. The primary rainfall trigger for post-wildfire debris flows is high intensity rainfall during short duration convective rainstorms or periods of high rainfall intensity embedded within a long-duration frontal storm. Numerous observations of debris flows triggered by storms lasting less than an hour following periods of little to no rainfall indicate that antecedent rainfall is not a requirement for initiation of post-wildfire debris flows. Post-wildfire debris-flow hazard assessment entails estimating probability and magnitude of debris flows in the burned area, estimating debris-flow runout and intensity, and defining rainfall intensity-duration thresholds for debris-flow initiation. In the United States, probability and magnitude is estimated using empirically derived models largely based on data collected in southern California. The models provide maps to identify watersheds and drainage paths where post-wildfire hazards are most pronounced. Rainfall intensity-duration thresholds can be incorporated into flood hazard forecasting tools. Currently, work is underway to identify how to best implement debris-flow runout models in burned areas with efficiency and accuracy. Post-wildfire debris flows have been a long-recognized process in the Transverse Ranges of southern California; however, climate change is driving more frequent wildfires to burn more mountainous terrain throughout the western United States and worldwide. As a result, post-wildfire debris flows are becoming a more common threat in areas where they were once infrequent. As the threat of post-wildfire debris flow expands into new areas, evaluating the hazard becomes challenging because the degree to which wildfire increases debris-flow susceptibility varies from region to region. This chapter summarizes the knowledge to date for evaluating post-wildfire debris-flow susceptibility and hazard assessment. We summarize the characteristics of wildfire burn severity, topography, underlying soil and geology, and rainfall conditions that contribute to making a watershed most likely to produce post-wildfire debris flows. Methods for hazard assessment in the United States and other countries are summarized. We highlight knowledge gaps for how post-wildfire debris-flow susceptibility varies throughout the western United States and worldwide and identify research needs to improve hazard assessment methods in different geographies.

Publication type Book chapter
Publication Subtype Book Chapter
Title Post-wildfire debris flows
DOI 10.1007/978-3-031-48691-3_11
Year Published 2024
Language English
Publisher Springer
Contributing office(s) Geologic Hazards Science Center - Seismology / Geomagnetism
Description 37 p.
Larger Work Type Book
Larger Work Subtype Monograph
Larger Work Title Advances in Debris-flow Science and Practice
First page 309
Last page 345
Google Analytic Metrics Metrics page
Additional publication details